Loading…
Examination and optimization of the self-assembly of biocompatible, polymeric nanoparticles by high-throughput nanoprecipitation
In recent years, the development of polymer nanoparticle suspensions by nanoprecipitation has gained increased attention both by industry and academia. However, the process by which such formulations are prepared is a highly empirically driven enterprise, whereby developing optimized formulations re...
Saved in:
Published in: | Soft matter 2011-01, Vol.7 (10), p.5030-5035 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, the development of polymer nanoparticle suspensions by nanoprecipitation has gained increased attention both by industry and academia. However, the process by which such formulations are prepared is a highly empirically driven enterprise, whereby developing optimized formulations remains an iterative process. In this contribution, a new approach towards exploration of the materials space for these systems is reported, based on systematically varying processing and formulation to understand their influence on the characteristics of the resulting materials. Taking advantage of the tools and techniques that have already been standardized by informatics-driven life sciences disciplines, we have prepared libraries of nanoparticle formulations of poly(methyl methacrylate-stat-acrylate), poly(lactic-co-glycolic acid), and acetal-derivatized dextran by using a pipetting robot. They were subsequently characterized using a dynamic light scattering plate reader, analytical ultracentrifugation, and scanning electron microscopy. With this high-throughput nanoprecipitation approach, large numbers of materials can be prepared, screened, and the formulation rationally optimized. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c1sm05079f |