Loading…
Feedback error learning neural network for trans-femoral prosthesis
Feedback-error learning (FEL) neural network was developed for control of a powered trans-femoral prosthesis. Nonlinearities and time-variations of the dynamics of the plant, in addition to redundancy and dynamic uncertainty during the double support phase of walking, makes conventional control meth...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2000-03, Vol.8 (1), p.71-80 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Feedback-error learning (FEL) neural network was developed for control of a powered trans-femoral prosthesis. Nonlinearities and time-variations of the dynamics of the plant, in addition to redundancy and dynamic uncertainty during the double support phase of walking, makes conventional control methods very difficult to use. Rule-based control, which uses a knowledge base determined by machine learning and finite automata method is limited since it does not respond well to perturbations and environmental changes. FEL can be regarded as a hybrid control, because it combines nonparametric identification with parametric modeling and control. This paper presents simulation of a powered trans-femoral prosthesis controlled by a FEL neural network. Results suggest that FEL can be used to identify inverse dynamics of an arbitrary trans-femoral prosthesis during simple single joint movements (e.g., sinusoidal oscillations). The identified inverse dynamics then allows the tracking of an arbitrary trajectory such as a desired walking pattern within a multijoint structure. Simulation shows that the identified controller responds correctly when the leg motion is exposed to a perturbation such as a frequent change of the ground reaction force or the hip joint torque generated by the user. FEL eliminates the need for precise, tedious, and complex identification of model parameters. |
---|---|
ISSN: | 1063-6528 1534-4320 1558-0024 1558-0210 |
DOI: | 10.1109/86.830951 |