Loading…

A Phase I Clinical and Pharmacological Evaluation of Sodium Phenylbutyrate on an 120-h Infusion Schedule

Purpose: Sodium phenylbutyrate (PB) demonstrates potent differentiating capacity in multiple hematopoietic and solid tumor cell lines. We conducted a Phase I and pharmacokinetic study of PB by continuous infusion to characterize the maximum tolerated dose, toxicities, pharmacokinetics, and antitumor...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2001-10, Vol.7 (10), p.3047-3055
Main Authors: CARDUCCI, Michael A, GILBERT, Jill, BOWLING, M. Katherine, NOE, Dennis, EISENBERGER, Mario A, SINIBALDI, Victoria, ZABELINA, Yelena, CHEN, Tian-Ling, GROCHOW, Louise B, DONEHOWER, Ross C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Sodium phenylbutyrate (PB) demonstrates potent differentiating capacity in multiple hematopoietic and solid tumor cell lines. We conducted a Phase I and pharmacokinetic study of PB by continuous infusion to characterize the maximum tolerated dose, toxicities, pharmacokinetics, and antitumor effects in patients with refractory solid tumors. Patients and Methods: Patients were treated with a 120-h PB infusion every 21 days. The dose was escalated from 150 to 515 mg/kg/day. Pharmacokinetics were performed during and after the first infusion period using a validated high-performance liquid chromatographic assay and single compartmental pharmacokinetic model for PB and its principal metabolite, phenylacetate. Results: A total of 24 patients were enrolled on study, with hormone refractory prostate cancer being the predominant tumor type. All patients were evaluable for toxicity and response. A total of 89 cycles were administered. The dose-limiting toxicity (DLT) was neuro-cortical, exemplified by excessive somnolence and confusion and accompanied by clinically significant hypokalemia, hyponatremia, and hyperuricemia. One patient at 515 mg/kg/day and another at 345 mg/kg/day experienced this DLT. Toxicity resolved ≤12 h of discontinuing the infusion. Other toxicities were mild, including fatigue and nausea. The maximum tolerated dose was 410 mg/kg/day for 5 days. Pharmacokinetics demonstrated that plasma clearance of PB increased in a continuous fashion beginning 24 h into the infusion. In individuals whose V max for drug elimination was less than their drug-dosing rate, the active metabolite phenylacetate accumulated progressively. Plasma PB concentrations (at 410 mg/kg/day) remained above the targeted therapeutic threshold of 500 μmol/liter required for in vitro activity. Conclusion: The DLT in this Phase I study for infusional PB given for 5 days every 21 days is neuro-cortical in nature. The recommended Phase II dose is 410 mg/kg/day for 120 h.
ISSN:1078-0432
1557-3265