Loading…
Identification of a novel synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate, that potently induces caspase-mediated apoptosis in human lung cancer cells
Lung cancer continues to be the leading cause of cancer-related death in the United States. Therefore, new agents targeting prevention and treatment of lung cancer are urgently needed. In the present study, we demonstrate that a novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-2...
Saved in:
Published in: | Molecular cancer therapeutics 2002-01, Vol.1 (3), p.177 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lung cancer continues to be the leading cause of cancer-related death in the United States. Therefore, new agents targeting prevention and treatment of lung cancer are urgently needed. In the present study, we demonstrate that a novel synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) is a potent inducer of apoptosis in human non-small cell lung carcinoma (NSCLC) cells. The concentrations required for a 50% decrease in cell survival (IC50) ranged from 0.1 to 0.3 microM. CDDO-Me induced rapid apoptosis and triggered a series of effects associated with apoptosis including a rapid release of cytochrome c from mitochondria, activation of procaspase-9, -7, -6, and -3, and cleavage of poly(ADP-ribose) polymerase and lamin A/C. Moreover, the caspase-3 inhibitor Z-DEVD-FMK and the pan caspase inhibitor Z-VAD-FMK suppressed CDDO-Me-induced apoptosis. These results indicate that CDDO-Me induced apoptosis in human NSCLC cells via a cytochrome c-triggered caspase activation pathway. CDDO-Me did not alter the level of Bcl-2 and Bcl-xL proteins, and no correlation was found between cell sensitivity to CDDO-Me and basal Bcl-2 expression level. Furthermore, overexpression of Bcl-2 did not protect cells from CDDO-Me-induced apoptosis. These results suggest that CDDO-Me induces apoptosis in NSCLC cells irrespective of Bcl-2 expression level. In addition, no correlation was found between cell sensitivity to CDDO-Me and p53 status, suggesting that CDDO-Me induce a p53-independent apoptosis. Our results demonstrate that CDDO-Me may be a good candidate for additional evaluation as a potential therapeutic agent for human lung cancers and possibly other types of cancer. |
---|---|
ISSN: | 1535-7163 |