Loading…
Nanoprecipitation technique for the encapsulation of agrochemical active ingredients
In 1997, a research programme was initiated to assess the ability of nanospheres (NS) to improve the biodelivery of a new insecticide to plants. Stable polymeric NS, with a size near 135 nm and an encapsulation rate in the range of 3.5%, have been obtained using a nanoprecipitation method with Eudra...
Saved in:
Published in: | Journal of microencapsulation 2003-07, Vol.20 (4), p.433-441 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 1997, a research programme was initiated to assess the ability of nanospheres (NS) to improve the biodelivery of a new insecticide to plants. Stable polymeric NS, with a size near 135 nm and an encapsulation rate in the range of 3.5%, have been obtained using a nanoprecipitation method with Eudragit S100 polymer. Biological studies have been performed on cotton plants infested with aphid, to estimate the direct contact efficacy of NS formulations on the insects and the systemicity of the encapsulated active ingredient and its level of penetration through the plant, compared to a classical suspension used as a reference. Results indicate that NS formulations are not so good as the reference in terms of speed of action and sustained release. Nevertheless, NS formulation performed better than the reference to enhance the systemicity of the AI and improve its penetration through the plant. It is concluded that the NS do not provide a controlled release of AI but, due to their small size, they enhance the penetration in the plant compared to the classical suspension. |
---|---|
ISSN: | 0265-2048 1464-5246 |
DOI: | 10.1080/0265204021000058410 |