Loading…
Transfer of human alpha- to beta-hemoglobin via its chaperone protein: evidence for a new state
The alpha-hemoglobin-stabilizing protein (AHSP), a small protein of 102 amino acids, is synthesized in red blood cell precursors. It binds specifically to alpha-hemoglobin (alpha-Hb) subunits acting as a chaperone protein, preventing the formation of alpha-hemoglobin-cytotoxic precipitates. We have...
Saved in:
Published in: | The Journal of biological chemistry 2004-08, Vol.279 (35), p.36530 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The alpha-hemoglobin-stabilizing protein (AHSP), a small protein of 102 amino acids, is synthesized in red blood cell precursors. It binds specifically to alpha-hemoglobin (alpha-Hb) subunits acting as a chaperone protein, preventing the formation of alpha-hemoglobin-cytotoxic precipitates. We have engineered recombinant AHSP in a pGEX vector to study the functional consequence of interaction between AHSP and alpha-Hb. By in vitro binding assays, we have isolated the complexes glutathione S-transferase-AHSP.alpha-Hb and AHSP.alpha-Hb. The latter assembles as a heterodimer based on size-exclusion chromatography. These complexes exhibited monophasic CO binding kinetics, as observed for isolated alpha- and beta-subunits of hemoglobin. However, the rate of CO (or oxygen) binding to alpha-hemoglobin bound to its chaperone is three times slower than that observed for isolated alpha-hemoglobin, demonstrating a form that is intermediate to the R- and T-hemoglobin states. The physiologically relevant replacement of the chaperone by beta-hemoglobin chains could be detected by both ligand binding kinetics and tryptophan fluorescence quenching. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M405389200 |