Loading…

Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms

Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2005-05, Vol.71 (5), p.2548-2557
Main Authors: Kloepfer, J. A, Mielke, R. E, Nadeau, J. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23
cites cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23
container_end_page 2557
container_issue 5
container_start_page 2548
container_title Applied and Environmental Microbiology
container_volume 71
creator Kloepfer, J. A
Mielke, R. E
Nadeau, J. L
description Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are
doi_str_mv 10.1128/AEM.71.5.2548-2557.2005
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15870345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17494088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIRNPCX6ADEuwm9fuxqVTS8pBaAQphwca64_EkLhlPsGda8e9xSESADbIsW_J3j4_vcVGcYjTFmKizi6ubqcRTPiWcqYpwLqcEIf6gmGCkVcUpFQ-LCUJaV4QwdFQcp3SLEGJIqMfFEeZKIsr4pPiy2AzwzZV9W86auSshNL82Z1_DvPw0QhjGrrzsh1T6MPTla7CDix7Kuzw_jtEHV126jQuNC0N54-wKgk9delI8amGd3NP9elIs3lx9nr2rrj-8fT-7uK4s53SoBHZEcMEdFZSSVjNANdMNIUoxAKQsswSsyKOuG5Ct0Ng6SesW1dC2DaEnxflOdzPWnWtsdhFhbTbRdxB_mB68-fsk-JVZ9ncGIyW5Ylng1V4g9t9HlwbT-WTdeg3B9WMyQkqls7n_glgyzZBSGXzxD3jbjzHkLhiCuOaCaJkhuYNs7FOKrv1tGSOzTdjkhI3EhpttwmabsNkmnCuf_fniQ90-0gy83AOQLKzbCMH6dOCEFJyJbeue77iVX67ufXQGUmfAdYdrM3O6Y1roDSxj1lnMCcI0_yylCRb0J-vzwxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205956297</pqid></control><display><type>article</type><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><source>ASM Journals (American Society for Microbiology)</source><source>PubMed Central</source><creator>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</creator><creatorcontrib>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</creatorcontrib><description>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are &lt;5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of &lt;5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.71.5.2548-2557.2005</identifier><identifier>PMID: 15870345</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Adenine - metabolism ; Adenosine Monophosphate - metabolism ; Bacillus subtilis ; Bacillus subtilis - metabolism ; Bacteria ; Bacteria - metabolism ; Biological and medical sciences ; Cadmium ; Cells ; Escherichia coli ; Escherichia coli - metabolism ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Light ; Methods ; Microbiology ; Quantum Dots ; Selenium ; Signal transduction ; Sulfides ; Zinc Compounds</subject><ispartof>Applied and Environmental Microbiology, 2005-05, Vol.71 (5), p.2548-2557</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Society for Microbiology May 2005</rights><rights>Copyright © 2005, American Society for Microbiology 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</citedby><cites>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087584/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087584/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16765462$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15870345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kloepfer, J. A</creatorcontrib><creatorcontrib>Mielke, R. E</creatorcontrib><creatorcontrib>Nadeau, J. L</creatorcontrib><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are &lt;5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of &lt;5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</description><subject>Adenine - metabolism</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cadmium</subject><subject>Cells</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Light</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Quantum Dots</subject><subject>Selenium</subject><subject>Signal transduction</subject><subject>Sulfides</subject><subject>Zinc Compounds</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkktvEzEUhUcIRNPCX6ADEuwm9fuxqVTS8pBaAQphwca64_EkLhlPsGda8e9xSESADbIsW_J3j4_vcVGcYjTFmKizi6ubqcRTPiWcqYpwLqcEIf6gmGCkVcUpFQ-LCUJaV4QwdFQcp3SLEGJIqMfFEeZKIsr4pPiy2AzwzZV9W86auSshNL82Z1_DvPw0QhjGrrzsh1T6MPTla7CDix7Kuzw_jtEHV126jQuNC0N54-wKgk9delI8amGd3NP9elIs3lx9nr2rrj-8fT-7uK4s53SoBHZEcMEdFZSSVjNANdMNIUoxAKQsswSsyKOuG5Ct0Ng6SesW1dC2DaEnxflOdzPWnWtsdhFhbTbRdxB_mB68-fsk-JVZ9ncGIyW5Ylng1V4g9t9HlwbT-WTdeg3B9WMyQkqls7n_glgyzZBSGXzxD3jbjzHkLhiCuOaCaJkhuYNs7FOKrv1tGSOzTdjkhI3EhpttwmabsNkmnCuf_fniQ90-0gy83AOQLKzbCMH6dOCEFJyJbeue77iVX67ufXQGUmfAdYdrM3O6Y1roDSxj1lnMCcI0_yylCRb0J-vzwxc</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Kloepfer, J. A</creator><creator>Mielke, R. E</creator><creator>Nadeau, J. L</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050501</creationdate><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><author>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenine - metabolism</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cadmium</topic><topic>Cells</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Light</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Quantum Dots</topic><topic>Selenium</topic><topic>Signal transduction</topic><topic>Sulfides</topic><topic>Zinc Compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kloepfer, J. A</creatorcontrib><creatorcontrib>Mielke, R. E</creatorcontrib><creatorcontrib>Nadeau, J. L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kloepfer, J. A</au><au>Mielke, R. E</au><au>Nadeau, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>71</volume><issue>5</issue><spage>2548</spage><epage>2557</epage><pages>2548-2557</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are &lt;5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of &lt;5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>15870345</pmid><doi>10.1128/AEM.71.5.2548-2557.2005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2005-05, Vol.71 (5), p.2548-2557
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmed_primary_15870345
source ASM Journals (American Society for Microbiology); PubMed Central
subjects Adenine - metabolism
Adenosine Monophosphate - metabolism
Bacillus subtilis
Bacillus subtilis - metabolism
Bacteria
Bacteria - metabolism
Biological and medical sciences
Cadmium
Cells
Escherichia coli
Escherichia coli - metabolism
Fluorescence
Fundamental and applied biological sciences. Psychology
Light
Methods
Microbiology
Quantum Dots
Selenium
Signal transduction
Sulfides
Zinc Compounds
title Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uptake%20of%20CdSe%20and%20CdSe/ZnS%20Quantum%20Dots%20into%20Bacteria%20via%20Purine-Dependent%20Mechanisms&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Kloepfer,%20J.%20A&rft.date=2005-05-01&rft.volume=71&rft.issue=5&rft.spage=2548&rft.epage=2557&rft.pages=2548-2557&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.71.5.2548-2557.2005&rft_dat=%3Cproquest_pubme%3E17494088%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205956297&rft_id=info:pmid/15870345&rfr_iscdi=true