Loading…
Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms
Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that...
Saved in:
Published in: | Applied and Environmental Microbiology 2005-05, Vol.71 (5), p.2548-2557 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23 |
container_end_page | 2557 |
container_issue | 5 |
container_start_page | 2548 |
container_title | Applied and Environmental Microbiology |
container_volume | 71 |
creator | Kloepfer, J. A Mielke, R. E Nadeau, J. L |
description | Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are |
doi_str_mv | 10.1128/AEM.71.5.2548-2557.2005 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15870345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17494088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</originalsourceid><addsrcrecordid>eNqFkktvEzEUhUcIRNPCX6ADEuwm9fuxqVTS8pBaAQphwca64_EkLhlPsGda8e9xSESADbIsW_J3j4_vcVGcYjTFmKizi6ubqcRTPiWcqYpwLqcEIf6gmGCkVcUpFQ-LCUJaV4QwdFQcp3SLEGJIqMfFEeZKIsr4pPiy2AzwzZV9W86auSshNL82Z1_DvPw0QhjGrrzsh1T6MPTla7CDix7Kuzw_jtEHV126jQuNC0N54-wKgk9delI8amGd3NP9elIs3lx9nr2rrj-8fT-7uK4s53SoBHZEcMEdFZSSVjNANdMNIUoxAKQsswSsyKOuG5Ct0Ng6SesW1dC2DaEnxflOdzPWnWtsdhFhbTbRdxB_mB68-fsk-JVZ9ncGIyW5Ylng1V4g9t9HlwbT-WTdeg3B9WMyQkqls7n_glgyzZBSGXzxD3jbjzHkLhiCuOaCaJkhuYNs7FOKrv1tGSOzTdjkhI3EhpttwmabsNkmnCuf_fniQ90-0gy83AOQLKzbCMH6dOCEFJyJbeue77iVX67ufXQGUmfAdYdrM3O6Y1roDSxj1lnMCcI0_yylCRb0J-vzwxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205956297</pqid></control><display><type>article</type><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><source>ASM Journals (American Society for Microbiology)</source><source>PubMed Central</source><creator>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</creator><creatorcontrib>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</creatorcontrib><description>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are <5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of <5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.71.5.2548-2557.2005</identifier><identifier>PMID: 15870345</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Adenine - metabolism ; Adenosine Monophosphate - metabolism ; Bacillus subtilis ; Bacillus subtilis - metabolism ; Bacteria ; Bacteria - metabolism ; Biological and medical sciences ; Cadmium ; Cells ; Escherichia coli ; Escherichia coli - metabolism ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Light ; Methods ; Microbiology ; Quantum Dots ; Selenium ; Signal transduction ; Sulfides ; Zinc Compounds</subject><ispartof>Applied and Environmental Microbiology, 2005-05, Vol.71 (5), p.2548-2557</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Society for Microbiology May 2005</rights><rights>Copyright © 2005, American Society for Microbiology 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</citedby><cites>FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087584/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087584/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,3189,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16765462$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15870345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kloepfer, J. A</creatorcontrib><creatorcontrib>Mielke, R. E</creatorcontrib><creatorcontrib>Nadeau, J. L</creatorcontrib><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are <5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of <5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</description><subject>Adenine - metabolism</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cadmium</subject><subject>Cells</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Light</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Quantum Dots</subject><subject>Selenium</subject><subject>Signal transduction</subject><subject>Sulfides</subject><subject>Zinc Compounds</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkktvEzEUhUcIRNPCX6ADEuwm9fuxqVTS8pBaAQphwca64_EkLhlPsGda8e9xSESADbIsW_J3j4_vcVGcYjTFmKizi6ubqcRTPiWcqYpwLqcEIf6gmGCkVcUpFQ-LCUJaV4QwdFQcp3SLEGJIqMfFEeZKIsr4pPiy2AzwzZV9W86auSshNL82Z1_DvPw0QhjGrrzsh1T6MPTla7CDix7Kuzw_jtEHV126jQuNC0N54-wKgk9delI8amGd3NP9elIs3lx9nr2rrj-8fT-7uK4s53SoBHZEcMEdFZSSVjNANdMNIUoxAKQsswSsyKOuG5Ct0Ng6SesW1dC2DaEnxflOdzPWnWtsdhFhbTbRdxB_mB68-fsk-JVZ9ncGIyW5Ylng1V4g9t9HlwbT-WTdeg3B9WMyQkqls7n_glgyzZBSGXzxD3jbjzHkLhiCuOaCaJkhuYNs7FOKrv1tGSOzTdjkhI3EhpttwmabsNkmnCuf_fniQ90-0gy83AOQLKzbCMH6dOCEFJyJbeue77iVX67ufXQGUmfAdYdrM3O6Y1roDSxj1lnMCcI0_yylCRb0J-vzwxc</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Kloepfer, J. A</creator><creator>Mielke, R. E</creator><creator>Nadeau, J. L</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050501</creationdate><title>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</title><author>Kloepfer, J. A ; Mielke, R. E ; Nadeau, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenine - metabolism</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cadmium</topic><topic>Cells</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Light</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Quantum Dots</topic><topic>Selenium</topic><topic>Signal transduction</topic><topic>Sulfides</topic><topic>Zinc Compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kloepfer, J. A</creatorcontrib><creatorcontrib>Mielke, R. E</creatorcontrib><creatorcontrib>Nadeau, J. L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kloepfer, J. A</au><au>Mielke, R. E</au><au>Nadeau, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2005-05-01</date><risdate>2005</risdate><volume>71</volume><issue>5</issue><spage>2548</spage><epage>2557</epage><pages>2548-2557</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria only if the particles are <5 nm in diameter. Labeling is dependent upon purine-processing mechanisms, as mutants lacking single enzymes demonstrate a qualitatively different signal than do wild-type strains. This is shown for two example species, one gram negative and one gram positive. Wild-type Bacillus subtilis incubated with QDs conjugated to adenine are strongly fluorescent; very weak signal is seen in mutant cells lacking either adenine deaminase or adenosine phosphoribosyltransferase. Conversely, QD-AMP conjugates label mutant strains more efficiently than the wild type. In Escherichia coli, QD conjugates are taken up most strongly by adenine auxotrophs and are extruded from the cells over a time course of hours. No fluorescent labeling is seen in killed bacteria or in the presence of EDTA or an excess of unlabeled adenine, AMP, or hypoxanthine. Spectroscopy and electron microscopy suggest that QDs of <5 nm can enter the cells whole, probably by means of oxidative damage to the cell membrane which is aided by light.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>15870345</pmid><doi>10.1128/AEM.71.5.2548-2557.2005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2005-05, Vol.71 (5), p.2548-2557 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmed_primary_15870345 |
source | ASM Journals (American Society for Microbiology); PubMed Central |
subjects | Adenine - metabolism Adenosine Monophosphate - metabolism Bacillus subtilis Bacillus subtilis - metabolism Bacteria Bacteria - metabolism Biological and medical sciences Cadmium Cells Escherichia coli Escherichia coli - metabolism Fluorescence Fundamental and applied biological sciences. Psychology Light Methods Microbiology Quantum Dots Selenium Signal transduction Sulfides Zinc Compounds |
title | Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uptake%20of%20CdSe%20and%20CdSe/ZnS%20Quantum%20Dots%20into%20Bacteria%20via%20Purine-Dependent%20Mechanisms&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Kloepfer,%20J.%20A&rft.date=2005-05-01&rft.volume=71&rft.issue=5&rft.spage=2548&rft.epage=2557&rft.pages=2548-2557&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.71.5.2548-2557.2005&rft_dat=%3Cproquest_pubme%3E17494088%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c553t-61e26565e36332f94a0b49d22884aa08c4c2ac6c6cbbda7f691ce73bf0baffd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205956297&rft_id=info:pmid/15870345&rfr_iscdi=true |