Loading…
On the Euclidean distance of images
We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively r...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2005-08, Vol.27 (8), p.1334-1339 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3 |
container_end_page | 1339 |
container_issue | 8 |
container_start_page | 1334 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 27 |
creator | Wang, Liwei Zhang, Yan Feng, Jufu |
description | We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions. |
doi_str_mv | 10.1109/TPAMI.2005.165 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16119271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1453520</ieee_id><sourcerecordid>2352137431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</originalsourceid><addsrcrecordid>eNqF0U1PGzEQBmCrKiop9MoFqVpRFU6bejzrr2MUpQUJlB7o2XK8Y1i02aXr7IF_j9NEAnEoJx_8zEjzvoydAJ8CcPvj9vfs5moqOJdTUPIDm4BFW6JE-5FNOChRGiPMIfuc0gPnUEmOn9ghKAArNEzYt2VXbO6pWIyhbWryXVE3aeO7QEUfi2bt7ygds4Po20Rf9u8R-_NzcTu_LK-Xv67ms-syVIibkkIgi9paLmsQKxurWolImmKw5INCQbDiFlCgjhiwrlXQxgRjMJKXhEfsYrf3cej_jpQ2bt2kQG3rO-rH5IxV-TpQPMvz_0plJKBR8C4UhldWc5Xh2Rv40I9Dl891RmmlNGiT0XSHwtCnNFB0j0OOaHhywN22DvevDretw-U68sDX_dZxtab6he_zz-D7HvgUfBuHnHyTXrmtqrYHn-5cQ0Qv35VEKTg-A3lRmB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867667178</pqid></control><display><type>article</type><title>On the Euclidean distance of images</title><source>IEEE Xplore (Online service)</source><creator>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</creator><creatorcontrib>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</creatorcontrib><description>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.165</identifier><identifier>PMID: 16119271</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Cluster Analysis ; Computer science; control theory; systems ; Computer Simulation ; Euclidean distance ; Exact sciences and technology ; Face - anatomy & histology ; Face recognition ; Humans ; Image classification ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image recognition ; Index Terms- Image metric ; Information Storage and Retrieval - methods ; Linear discriminant analysis ; Models, Biological ; Models, Statistical ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Perturbation methods ; positive definite function ; Principal component analysis ; Robustness ; Smoothing methods ; Subtraction Technique ; Support vector machine classification ; Support vector machines ; Transformations ; Transforms</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-08, Vol.27 (8), p.1334-1339</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</citedby><cites>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1453520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16927140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16119271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Feng, Jufu</creatorcontrib><title>On the Euclidean distance of images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Euclidean distance</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy & histology</subject><subject>Face recognition</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image recognition</subject><subject>Index Terms- Image metric</subject><subject>Information Storage and Retrieval - methods</subject><subject>Linear discriminant analysis</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Perturbation methods</subject><subject>positive definite function</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Smoothing methods</subject><subject>Subtraction Technique</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Transformations</subject><subject>Transforms</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0U1PGzEQBmCrKiop9MoFqVpRFU6bejzrr2MUpQUJlB7o2XK8Y1i02aXr7IF_j9NEAnEoJx_8zEjzvoydAJ8CcPvj9vfs5moqOJdTUPIDm4BFW6JE-5FNOChRGiPMIfuc0gPnUEmOn9ghKAArNEzYt2VXbO6pWIyhbWryXVE3aeO7QEUfi2bt7ygds4Po20Rf9u8R-_NzcTu_LK-Xv67ms-syVIibkkIgi9paLmsQKxurWolImmKw5INCQbDiFlCgjhiwrlXQxgRjMJKXhEfsYrf3cej_jpQ2bt2kQG3rO-rH5IxV-TpQPMvz_0plJKBR8C4UhldWc5Xh2Rv40I9Dl891RmmlNGiT0XSHwtCnNFB0j0OOaHhywN22DvevDretw-U68sDX_dZxtab6he_zz-D7HvgUfBuHnHyTXrmtqrYHn-5cQ0Qv35VEKTg-A3lRmB8</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Wang, Liwei</creator><creator>Zhang, Yan</creator><creator>Feng, Jufu</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>On the Euclidean distance of images</title><author>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Euclidean distance</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy & histology</topic><topic>Face recognition</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image recognition</topic><topic>Index Terms- Image metric</topic><topic>Information Storage and Retrieval - methods</topic><topic>Linear discriminant analysis</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Perturbation methods</topic><topic>positive definite function</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Smoothing methods</topic><topic>Subtraction Technique</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Feng, Jufu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liwei</au><au>Zhang, Yan</au><au>Feng, Jufu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Euclidean distance of images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>27</volume><issue>8</issue><spage>1334</spage><epage>1339</epage><pages>1334-1339</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16119271</pmid><doi>10.1109/TPAMI.2005.165</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2005-08, Vol.27 (8), p.1334-1339 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_pubmed_primary_16119271 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Applied sciences Artificial Intelligence Biometry - methods Cluster Analysis Computer science control theory systems Computer Simulation Euclidean distance Exact sciences and technology Face - anatomy & histology Face recognition Humans Image classification Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image recognition Index Terms- Image metric Information Storage and Retrieval - methods Linear discriminant analysis Models, Biological Models, Statistical Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Perturbation methods positive definite function Principal component analysis Robustness Smoothing methods Subtraction Technique Support vector machine classification Support vector machines Transformations Transforms |
title | On the Euclidean distance of images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Euclidean%20distance%20of%20images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wang,%20Liwei&rft.date=2005-08-01&rft.volume=27&rft.issue=8&rft.spage=1334&rft.epage=1339&rft.pages=1334-1339&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.165&rft_dat=%3Cproquest_pubme%3E2352137431%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867667178&rft_id=info:pmid/16119271&rft_ieee_id=1453520&rfr_iscdi=true |