Loading…

On the Euclidean distance of images

We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2005-08, Vol.27 (8), p.1334-1339
Main Authors: Wang, Liwei, Zhang, Yan, Feng, Jufu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3
cites cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3
container_end_page 1339
container_issue 8
container_start_page 1334
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 27
creator Wang, Liwei
Zhang, Yan
Feng, Jufu
description We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.
doi_str_mv 10.1109/TPAMI.2005.165
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16119271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1453520</ieee_id><sourcerecordid>2352137431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</originalsourceid><addsrcrecordid>eNqF0U1PGzEQBmCrKiop9MoFqVpRFU6bejzrr2MUpQUJlB7o2XK8Y1i02aXr7IF_j9NEAnEoJx_8zEjzvoydAJ8CcPvj9vfs5moqOJdTUPIDm4BFW6JE-5FNOChRGiPMIfuc0gPnUEmOn9ghKAArNEzYt2VXbO6pWIyhbWryXVE3aeO7QEUfi2bt7ygds4Po20Rf9u8R-_NzcTu_LK-Xv67ms-syVIibkkIgi9paLmsQKxurWolImmKw5INCQbDiFlCgjhiwrlXQxgRjMJKXhEfsYrf3cej_jpQ2bt2kQG3rO-rH5IxV-TpQPMvz_0plJKBR8C4UhldWc5Xh2Rv40I9Dl891RmmlNGiT0XSHwtCnNFB0j0OOaHhywN22DvevDretw-U68sDX_dZxtab6he_zz-D7HvgUfBuHnHyTXrmtqrYHn-5cQ0Qv35VEKTg-A3lRmB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867667178</pqid></control><display><type>article</type><title>On the Euclidean distance of images</title><source>IEEE Xplore (Online service)</source><creator>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</creator><creatorcontrib>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</creatorcontrib><description>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.165</identifier><identifier>PMID: 16119271</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Cluster Analysis ; Computer science; control theory; systems ; Computer Simulation ; Euclidean distance ; Exact sciences and technology ; Face - anatomy &amp; histology ; Face recognition ; Humans ; Image classification ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image recognition ; Index Terms- Image metric ; Information Storage and Retrieval - methods ; Linear discriminant analysis ; Models, Biological ; Models, Statistical ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Perturbation methods ; positive definite function ; Principal component analysis ; Robustness ; Smoothing methods ; Subtraction Technique ; Support vector machine classification ; Support vector machines ; Transformations ; Transforms</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-08, Vol.27 (8), p.1334-1339</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</citedby><cites>FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1453520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16927140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16119271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Feng, Jufu</creatorcontrib><title>On the Euclidean distance of images</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Euclidean distance</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy &amp; histology</subject><subject>Face recognition</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image recognition</subject><subject>Index Terms- Image metric</subject><subject>Information Storage and Retrieval - methods</subject><subject>Linear discriminant analysis</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Perturbation methods</subject><subject>positive definite function</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Smoothing methods</subject><subject>Subtraction Technique</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Transformations</subject><subject>Transforms</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0U1PGzEQBmCrKiop9MoFqVpRFU6bejzrr2MUpQUJlB7o2XK8Y1i02aXr7IF_j9NEAnEoJx_8zEjzvoydAJ8CcPvj9vfs5moqOJdTUPIDm4BFW6JE-5FNOChRGiPMIfuc0gPnUEmOn9ghKAArNEzYt2VXbO6pWIyhbWryXVE3aeO7QEUfi2bt7ygds4Po20Rf9u8R-_NzcTu_LK-Xv67ms-syVIibkkIgi9paLmsQKxurWolImmKw5INCQbDiFlCgjhiwrlXQxgRjMJKXhEfsYrf3cej_jpQ2bt2kQG3rO-rH5IxV-TpQPMvz_0plJKBR8C4UhldWc5Xh2Rv40I9Dl891RmmlNGiT0XSHwtCnNFB0j0OOaHhywN22DvevDretw-U68sDX_dZxtab6he_zz-D7HvgUfBuHnHyTXrmtqrYHn-5cQ0Qv35VEKTg-A3lRmB8</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Wang, Liwei</creator><creator>Zhang, Yan</creator><creator>Feng, Jufu</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>On the Euclidean distance of images</title><author>Wang, Liwei ; Zhang, Yan ; Feng, Jufu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Euclidean distance</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy &amp; histology</topic><topic>Face recognition</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image recognition</topic><topic>Index Terms- Image metric</topic><topic>Information Storage and Retrieval - methods</topic><topic>Linear discriminant analysis</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Perturbation methods</topic><topic>positive definite function</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Smoothing methods</topic><topic>Subtraction Technique</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Feng, Jufu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liwei</au><au>Zhang, Yan</au><au>Feng, Jufu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Euclidean distance of images</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>27</volume><issue>8</issue><spage>1334</spage><epage>1339</epage><pages>1334-1339</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We present a new Euclidean distance for images, which we call image Euclidean distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as standardizing transform (ST). We show that ST is a transform domain smoothing. Using the face recognition technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>16119271</pmid><doi>10.1109/TPAMI.2005.165</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2005-08, Vol.27 (8), p.1334-1339
issn 0162-8828
1939-3539
language eng
recordid cdi_pubmed_primary_16119271
source IEEE Xplore (Online service)
subjects Algorithms
Applied sciences
Artificial Intelligence
Biometry - methods
Cluster Analysis
Computer science
control theory
systems
Computer Simulation
Euclidean distance
Exact sciences and technology
Face - anatomy & histology
Face recognition
Humans
Image classification
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image recognition
Index Terms- Image metric
Information Storage and Retrieval - methods
Linear discriminant analysis
Models, Biological
Models, Statistical
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Perturbation methods
positive definite function
Principal component analysis
Robustness
Smoothing methods
Subtraction Technique
Support vector machine classification
Support vector machines
Transformations
Transforms
title On the Euclidean distance of images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Euclidean%20distance%20of%20images&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wang,%20Liwei&rft.date=2005-08-01&rft.volume=27&rft.issue=8&rft.spage=1334&rft.epage=1339&rft.pages=1334-1339&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.165&rft_dat=%3Cproquest_pubme%3E2352137431%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-ecce9379905d12b9f4d62fe7efc9eac632e1b0913237f3c3dd6c788c883fea5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=867667178&rft_id=info:pmid/16119271&rft_ieee_id=1453520&rfr_iscdi=true