Loading…
Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity
Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if they are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Candidatus Phytoplasma asteris, OY strain, line W (OY), is a phytopat...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-03, Vol.103 (11), p.4252-4257 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if they are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Candidatus Phytoplasma asteris, OY strain, line W (OY), is a phytopathogenic bacterium transmitted from plant to plant by sap-feeding insect vectors (leafhoppers). Our study focused on an abundant cell-surface membrane protein of the phytoplasma named antigenic membrane protein (Amp), which is not homologous with any reported functional protein. Immunofluorescence microscopy of the phytoplasma-infected insect showed that OY phytoplasma was localized to the microfilaments of the visceral smooth muscle surrounding the insect's intestinal tract. The affinity column assay showed that Amp forms a complex with three insect proteins: actin, myosin heavy chain, and myosin light chain. Amp-microfilament complexes were detected in all OY-transmitting leafhopper species, but not in the non-OY-transmitting leafhoppers, suggesting that the formation of the Amp-microfilament complex is correlated with the phytoplasma-transmitting capability of leafhoppers. Although several studies have reported interactions between pathogens and mammalian microfilaments, this is an example of host-specific interactions between a bacterial surface protein and a host microfilament in insect cells. Our data also suggest that the utilization of a host microfilament may be a universal system for pathogenic bacteria infecting mammals or insects. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0508668103 |