Loading…

The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment

In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leib...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2007-03, Vol.18 (2), p.584-588
Main Author: de Oliveira, E.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2006.889943