Loading…

The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment

In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leib...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2007-03, Vol.18 (2), p.584-588
Main Author: de Oliveira, E.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693
cites cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693
container_end_page 588
container_issue 2
container_start_page 584
container_title IEEE transaction on neural networks and learning systems
container_volume 18
creator de Oliveira, E.A.
description In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting
doi_str_mv 10.1109/TNN.2006.889943
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17385642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118259</ieee_id><sourcerecordid>2544666771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</originalsourceid><addsrcrecordid>eNp90UtLAzEUBeAgio_q2oUggwtdTb15J8sq9QGlgtR1SKeppswkmkyF_nuntii4cJVAvnsg9yB0iqGPMejryXjcJwCir5TWjO6gQ6wZLgE03e3uwHipCZEH6CjnBQBmHMQ-OsCSKi4YOUSPkzdXPMfswrS2bVvc2JXL3oZiUL_G5Nu3phg5m4IPr4UPhS3GMeTWtj4Gm1bFMHz6FEPjQnuM9ua2zu5ke_bQy91wcvtQjp7uH28Ho7KikrWlZNMZJ0CE5ZwQooWktqJzKrisOJ4rwUEqzISz0lFGQNBqVklOQfMpp0LTHrra5L6n-LF0uTWNz5WraxtcXGajFAhBuVrLy3-lhC4VlOrgxR-4iMsUul8YjQnBDH-j6w2qUsw5ubl5T77plmAwmHUZpivDrMswmzK6ifNt7HLauNmv326_A2cb4J1zP88MY0W4pl9jHIrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214188</pqid></control><display><type>article</type><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><source>IEEE Xplore (Online service)</source><creator>de Oliveira, E.A.</creator><creatorcontrib>de Oliveira, E.A.</creatorcontrib><description>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2006.889943</identifier><identifier>PMID: 17385642</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Bayesian methods ; Biological neural networks ; Computer Simulation ; Covariance matrix ; Distance learning ; Drift ; Entropy ; Feedback ; Gaussian distribution ; Gradient methods ; Information Storage and Retrieval - methods ; Learning ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Neurons ; Nonstationary environments ; Online gradient methods ; Pattern classification ; Pattern Recognition, Automated - methods ; Stochastic Processes ; Studies ; time- varying environment</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.584-588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</citedby><cites>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17385642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, E.A.</creatorcontrib><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Biological neural networks</subject><subject>Computer Simulation</subject><subject>Covariance matrix</subject><subject>Distance learning</subject><subject>Drift</subject><subject>Entropy</subject><subject>Feedback</subject><subject>Gaussian distribution</subject><subject>Gradient methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Nonstationary environments</subject><subject>Online gradient methods</subject><subject>Pattern classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>time- varying environment</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEUBeAgio_q2oUggwtdTb15J8sq9QGlgtR1SKeppswkmkyF_nuntii4cJVAvnsg9yB0iqGPMejryXjcJwCir5TWjO6gQ6wZLgE03e3uwHipCZEH6CjnBQBmHMQ-OsCSKi4YOUSPkzdXPMfswrS2bVvc2JXL3oZiUL_G5Nu3phg5m4IPr4UPhS3GMeTWtj4Gm1bFMHz6FEPjQnuM9ua2zu5ke_bQy91wcvtQjp7uH28Ho7KikrWlZNMZJ0CE5ZwQooWktqJzKrisOJ4rwUEqzISz0lFGQNBqVklOQfMpp0LTHrra5L6n-LF0uTWNz5WraxtcXGajFAhBuVrLy3-lhC4VlOrgxR-4iMsUul8YjQnBDH-j6w2qUsw5ubl5T77plmAwmHUZpivDrMswmzK6ifNt7HLauNmv326_A2cb4J1zP88MY0W4pl9jHIrI</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>de Oliveira, E.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><author>de Oliveira, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Biological neural networks</topic><topic>Computer Simulation</topic><topic>Covariance matrix</topic><topic>Distance learning</topic><topic>Drift</topic><topic>Entropy</topic><topic>Feedback</topic><topic>Gaussian distribution</topic><topic>Gradient methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Nonstationary environments</topic><topic>Online gradient methods</topic><topic>Pattern classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>time- varying environment</topic><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, E.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>18</volume><issue>2</issue><spage>584</spage><epage>588</epage><pages>584-588</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17385642</pmid><doi>10.1109/TNN.2006.889943</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.584-588
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_pubmed_primary_17385642
source IEEE Xplore (Online service)
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Bayes Theorem
Bayesian analysis
Bayesian methods
Biological neural networks
Computer Simulation
Covariance matrix
Distance learning
Drift
Entropy
Feedback
Gaussian distribution
Gradient methods
Information Storage and Retrieval - methods
Learning
Models, Theoretical
Neural networks
Neural Networks (Computer)
Neurons
Nonstationary environments
Online gradient methods
Pattern classification
Pattern Recognition, Automated - methods
Stochastic Processes
Studies
time- varying environment
title The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rosenblatt%20Bayesian%20Algorithm%20Learning%20in%20a%20Nonstationary%20Environment&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=de%20Oliveira,%20E.A.&rft.date=2007-03-01&rft.volume=18&rft.issue=2&rft.spage=584&rft.epage=588&rft.pages=584-588&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2006.889943&rft_dat=%3Cproquest_pubme%3E2544666771%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912214188&rft_id=info:pmid/17385642&rft_ieee_id=4118259&rfr_iscdi=true