Loading…
The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment
In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leib...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2007-03, Vol.18 (2), p.584-588 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693 |
container_end_page | 588 |
container_issue | 2 |
container_start_page | 584 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 18 |
creator | de Oliveira, E.A. |
description | In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting |
doi_str_mv | 10.1109/TNN.2006.889943 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17385642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118259</ieee_id><sourcerecordid>2544666771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</originalsourceid><addsrcrecordid>eNp90UtLAzEUBeAgio_q2oUggwtdTb15J8sq9QGlgtR1SKeppswkmkyF_nuntii4cJVAvnsg9yB0iqGPMejryXjcJwCir5TWjO6gQ6wZLgE03e3uwHipCZEH6CjnBQBmHMQ-OsCSKi4YOUSPkzdXPMfswrS2bVvc2JXL3oZiUL_G5Nu3phg5m4IPr4UPhS3GMeTWtj4Gm1bFMHz6FEPjQnuM9ua2zu5ke_bQy91wcvtQjp7uH28Ho7KikrWlZNMZJ0CE5ZwQooWktqJzKrisOJ4rwUEqzISz0lFGQNBqVklOQfMpp0LTHrra5L6n-LF0uTWNz5WraxtcXGajFAhBuVrLy3-lhC4VlOrgxR-4iMsUul8YjQnBDH-j6w2qUsw5ubl5T77plmAwmHUZpivDrMswmzK6ifNt7HLauNmv326_A2cb4J1zP88MY0W4pl9jHIrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214188</pqid></control><display><type>article</type><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><source>IEEE Xplore (Online service)</source><creator>de Oliveira, E.A.</creator><creatorcontrib>de Oliveira, E.A.</creatorcontrib><description>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2006.889943</identifier><identifier>PMID: 17385642</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Bayesian methods ; Biological neural networks ; Computer Simulation ; Covariance matrix ; Distance learning ; Drift ; Entropy ; Feedback ; Gaussian distribution ; Gradient methods ; Information Storage and Retrieval - methods ; Learning ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Neurons ; Nonstationary environments ; Online gradient methods ; Pattern classification ; Pattern Recognition, Automated - methods ; Stochastic Processes ; Studies ; time- varying environment</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.584-588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</citedby><cites>FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17385642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, E.A.</creatorcontrib><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Biological neural networks</subject><subject>Computer Simulation</subject><subject>Covariance matrix</subject><subject>Distance learning</subject><subject>Drift</subject><subject>Entropy</subject><subject>Feedback</subject><subject>Gaussian distribution</subject><subject>Gradient methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Nonstationary environments</subject><subject>Online gradient methods</subject><subject>Pattern classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>time- varying environment</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEUBeAgio_q2oUggwtdTb15J8sq9QGlgtR1SKeppswkmkyF_nuntii4cJVAvnsg9yB0iqGPMejryXjcJwCir5TWjO6gQ6wZLgE03e3uwHipCZEH6CjnBQBmHMQ-OsCSKi4YOUSPkzdXPMfswrS2bVvc2JXL3oZiUL_G5Nu3phg5m4IPr4UPhS3GMeTWtj4Gm1bFMHz6FEPjQnuM9ua2zu5ke_bQy91wcvtQjp7uH28Ho7KikrWlZNMZJ0CE5ZwQooWktqJzKrisOJ4rwUEqzISz0lFGQNBqVklOQfMpp0LTHrra5L6n-LF0uTWNz5WraxtcXGajFAhBuVrLy3-lhC4VlOrgxR-4iMsUul8YjQnBDH-j6w2qUsw5ubl5T77plmAwmHUZpivDrMswmzK6ifNt7HLauNmv326_A2cb4J1zP88MY0W4pl9jHIrI</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>de Oliveira, E.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</title><author>de Oliveira, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Biological neural networks</topic><topic>Computer Simulation</topic><topic>Covariance matrix</topic><topic>Distance learning</topic><topic>Drift</topic><topic>Entropy</topic><topic>Feedback</topic><topic>Gaussian distribution</topic><topic>Gradient methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Nonstationary environments</topic><topic>Online gradient methods</topic><topic>Pattern classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>time- varying environment</topic><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, E.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>18</volume><issue>2</issue><spage>584</spage><epage>588</epage><pages>584-588</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>In this letter, we study online learning in neural networks (NNs) obtained by approximating Bayesian learning. The approach is applied to Gibbs learning with the Rosenblatt potential in a nonstationary environment. The online scheme is obtained by the minimization (maximization) of the Kullback-Leibler divergence (cross entropy) between the true posterior distribution and the parameterized one. The complexity of the learning algorithm is further decreased by projecting the posterior onto a Gaussian distribution and imposing a spherical covariance matrix. We study in detail the particular case of learning linearly separable rules. In the case of a fixed rule, we observe an asymptotic generalization error e g propalpha -1 for both the spherical and the full covariance matrix approximations. However, in the case of drifting rule, only the full covariance matrix algorithm shows a good performance. This good performance is indeed a surprise since the algorithm is obtained by projecting without the benefit of the extra information on drifting</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17385642</pmid><doi>10.1109/TNN.2006.889943</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.584-588 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_17385642 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial Intelligence Artificial neural networks Bayes Theorem Bayesian analysis Bayesian methods Biological neural networks Computer Simulation Covariance matrix Distance learning Drift Entropy Feedback Gaussian distribution Gradient methods Information Storage and Retrieval - methods Learning Models, Theoretical Neural networks Neural Networks (Computer) Neurons Nonstationary environments Online gradient methods Pattern classification Pattern Recognition, Automated - methods Stochastic Processes Studies time- varying environment |
title | The Rosenblatt Bayesian Algorithm Learning in a Nonstationary Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Rosenblatt%20Bayesian%20Algorithm%20Learning%20in%20a%20Nonstationary%20Environment&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=de%20Oliveira,%20E.A.&rft.date=2007-03-01&rft.volume=18&rft.issue=2&rft.spage=584&rft.epage=588&rft.pages=584-588&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2006.889943&rft_dat=%3Cproquest_pubme%3E2544666771%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-74bd52026a552229673ac3f3657c51f865078146ea7e342063cdc753095b53693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912214188&rft_id=info:pmid/17385642&rft_ieee_id=4118259&rfr_iscdi=true |