Loading…
An Adaptable Connectionist Text-Retrieval System With Relevance Feedback
This paper introduces a new connectionist network for certain domain-specific text-retrieval and search applications with expert end users. A new model reference adaptive system is proposed that involves three learning phases. Initial model-reference learning is first performed based upon an ensembl...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2007-11, Vol.18 (6), p.1597-1613 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces a new connectionist network for certain domain-specific text-retrieval and search applications with expert end users. A new model reference adaptive system is proposed that involves three learning phases. Initial model-reference learning is first performed based upon an ensemble set of input-output of an initial reference model. Model-reference following is needed in dynamic environments where documents are added, deleted, or updated. Relevance feedback learning from multiple expert users then optimally maps the original query using either a score-based or a click-through selection process. The learning can be implemented, in regression or classification modes, using a three-layer network. The first layer is an adaptable layer that performs mapping from query domain to document space. The second and third layers perform document-to-term mapping, search/retrieval, and scoring tasks. The learning algorithms are thoroughly tested on a domain-specific text database that encompasses a wide range of Hewlett Packard (HP) products and for a large number of most commonly used single- and multiterm queries. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2007.895912 |