Loading…

Size reduction by interpolation in fuzzy rule bases

Fuzzy control is at present still the most important area of real applications for fuzzy theory. It is a generalized form of expert control using fuzzy sets in the definition of vague/linguistic predicates, modeling a system by If...then rules. In the classical approaches it is necessary that observ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics man and cybernetics. Part B, Cybernetics, 1997-02, Vol.27 (1), p.14-25
Main Authors: Koczy, L.T., Hirota, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fuzzy control is at present still the most important area of real applications for fuzzy theory. It is a generalized form of expert control using fuzzy sets in the definition of vague/linguistic predicates, modeling a system by If...then rules. In the classical approaches it is necessary that observations on the actual state of the system partly match (fire) one or several rules in the model (fired rules), and the conclusion is calculated by the evaluation of the degrees of matching and the fired rules. Interpolation helps reduce the complexity as it allows rule bases with gaps. Various interpolation approaches are shown. It is proposed that dense rule bases should be reduced so that only the minimal necessary number of rules remain still containing the essential information in the original base, and all other rules are replaced by the interpolation algorithm that however can recover them with a certain accuracy prescribed before reduction. The interpolation method used for demonstration is the Lagrange method supplying the best fitting minimal degree polynomial. The paper concentrates on the reduction technique that is rather independent from the style of the interpolation model, but cannot be given in the form of a tractable algorithm. An example is shown to illustrate possible results and difficulties with the method.
ISSN:1083-4419
1941-0492
DOI:10.1109/3477.552182