Loading…

Novel Resistant Maltodextrin Alters Gastrointestinal Tolerance Factors, Fecal Characteristics, and Fecal Microbiota in Healthy Adult Humans

OBJECTIVE: Resistant maltodextrin has been shown to increase fecal bulk by resisting digestion and being partially fermented by colonic bacteria to short-chain fatty acids (SCFA). The objective of this experiment was to determine potential prebiotic effects, gastrointestinal tolerance, and fecal cha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Nutrition 2008-04, Vol.27 (2), p.356-366
Main Authors: Fastinger, Nathaniel D, Karr-Lilienthal, Lisa K, Spears, Julie K, Swanson, Kelly S, Zinn, Krista E, Nava, Gerardo M, Ohkuma, Kazuhiro, Kanahori, Sumiko, Gordon, Dennis T, Fahey, George C. Jr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:OBJECTIVE: Resistant maltodextrin has been shown to increase fecal bulk by resisting digestion and being partially fermented by colonic bacteria to short-chain fatty acids (SCFA). The objective of this experiment was to determine potential prebiotic effects, gastrointestinal tolerance, and fecal characteristics of free-living humans fed a novel resistant maltodextrin or a normal maltodextrin control. METHODS: Subjects (n = 38) were enrolled in a randomized, double-blind study where they were assigned to one of three daily treatments: 15 g maltodextrin; 7.5 g maltodextrin plus 7.5 g resistant maltodextrin (Fibersol-2®; Matsutani Chemical Company, Hyogo, Japan); and 15 g resistant maltodextrin. The experiment lasted 7 wk and consisted of a 2 wk baseline period, a 3 wk treatment period, and a 2 wk washout period. During wk 3 to 5 (treatment period), subjects consumed their assigned treatments. RESULTS: Resistant maltodextrin supplementation tended to increase (p = 0.12) fecal Bifidobacterium populations during the treatment period, altered (p < 0.05) bacterial populations from baseline to treatment, and resulted in very minor effects in gastrointestinal tolerance. There was a shift (p < 0.05) in molar proportions of SCFA towards butyrate, the preferred energy substrate of colonocytes. CONCLUSION: Resistant maltodextrin supplementation was well tolerated, resulted in favorable fermentation characteristics in the large bowel, and also resulted in a change in bacterial populations.
ISSN:0731-5724
1541-1087
DOI:10.1080/07315724.2008.10719712