Loading…

Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems

In the past few decades, many ingenious efforts have been made in the development of free-energy simulation methods. Because complex systems often undergo nontrivial structural transition during state switching, achieving efficient free-energy calculation can be challenging. As identified earlier, t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (51), p.20227-20232
Main Authors: Zheng, Lianqing, Chen, Mengen, Yang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the past few decades, many ingenious efforts have been made in the development of free-energy simulation methods. Because complex systems often undergo nontrivial structural transition during state switching, achieving efficient free-energy calculation can be challenging. As identified earlier, the "Hamiltonian" lagging, which reveals the fact that necessary structural relaxation falls behind the order parameter move, has been a primary problem for generally low free-energy simulation efficiency. Here, we propose an algorithm by achieving a random walk in both the order parameter space and its generalized force space; thereby, the order parameter move and the required conformational relaxation can be efficiently synchronized. As demonstrated in both the alchemical transition and the conformational transition, a leapfrog improvement in free-energy simulation efficiency can be obtained; for instance, (i) it allows us to solve a notoriously challenging problem: accurately predicting the pKa value of a buried titratable residue, Asp-66, in the interior of the V66E staphylococcal nuclease mutant, and (ii) it allows us to gain superior efficiency over the metadynamics algorithm.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0810631106