Loading…

D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex

Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fiel...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (37), p.16366-16371
Main Authors: Xu, Tai-Xiang, Yao, Wei-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303
cites cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303
container_end_page 16371
container_issue 37
container_start_page 16366
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Xu, Tai-Xiang
Yao, Wei-Dong
description Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.
doi_str_mv 10.1073/pnas.1004108107
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20805489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779669</jstor_id><sourcerecordid>20779669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</originalsourceid><addsrcrecordid>eNqNks9vFSEQx4nR2Gf17ElDvHhaOywsLBcT0_oraeJFz4Rlpy0v-2AFttGbf7qs79lWL3qBYfjMNzOTLyFPGbxioPjJHGyuEQgGfU3cIxsGmjVSaLhPNgCtanrRiiPyKOctAOiuh4fkqIUeOtHrDflxxqgNIz1r6Rhnu_MBaUKHc4kpUx9oxtkmW5A6n9ziS6Yuxhl_pUqkY_LXSG3O0Xlb1niK4bIpmHZ0jgVDWdMxrFLlCumc8CLFUOxUdVLBb4_Jgws7ZXxyuI_Jl3dvP59-aM4_vf94-ua8cR2H0jhtle6GegolRi3ZKIYBWtcrUFIOUmnN-qHHsQ5mOQpU2IuBW1dfCjnwY_J6rzsvww5HVztLdjJz8jubvptovfnzJ_grcxmvTasF42wVeHkQSPHrgrmYnc8Op8kGjEs2vVS1N9bK_ySh5f8kVdcx2YJSlXzxF7mNSwp1YxVigqlOiAqd7CGXYs510zfjMTCrX8zqF3Prl1rx_O5WbvjfBqkAPQBr5a2cMlwZJrlcx322R7a5muaOhFJaSs1_Av-U0Zc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751417544</pqid></control><display><type>article</type><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xu, Tai-Xiang ; Yao, Wei-Dong</creator><creatorcontrib>Xu, Tai-Xiang ; Yao, Wei-Dong</creatorcontrib><description>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1004108107</identifier><identifier>PMID: 20805489</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arousal ; Biological Sciences ; Brain ; Channel gating ; Circuits ; Cortex (prefrontal) ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; gamma -Aminobutyric acid ; gamma-Aminobutyric Acid - metabolism ; Interneurons ; Ion Channel Gating ; Learning ; Long term potentiation ; Memory ; Mice ; Mice, Inbred C57BL ; Motivation ; Neurons ; Neuroscience ; Neurotransmission ; Plasticity ; Plasticity (synaptic) ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Pyramidal cells ; Receptors ; Receptors, Dopamine D1 - metabolism ; Receptors, Dopamine D2 - metabolism ; Synapses ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16366-16371</ispartof><rights>Copyright National Academy of Sciences Sep 14, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</citedby><cites>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779669$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779669$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20805489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Tai-Xiang</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</description><subject>Animals</subject><subject>Arousal</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Channel gating</subject><subject>Circuits</subject><subject>Cortex (prefrontal)</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>gamma -Aminobutyric acid</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Interneurons</subject><subject>Ion Channel Gating</subject><subject>Learning</subject><subject>Long term potentiation</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motivation</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmission</subject><subject>Plasticity</subject><subject>Plasticity (synaptic)</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Pyramidal cells</subject><subject>Receptors</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Synapses</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNks9vFSEQx4nR2Gf17ElDvHhaOywsLBcT0_oraeJFz4Rlpy0v-2AFttGbf7qs79lWL3qBYfjMNzOTLyFPGbxioPjJHGyuEQgGfU3cIxsGmjVSaLhPNgCtanrRiiPyKOctAOiuh4fkqIUeOtHrDflxxqgNIz1r6Rhnu_MBaUKHc4kpUx9oxtkmW5A6n9ziS6Yuxhl_pUqkY_LXSG3O0Xlb1niK4bIpmHZ0jgVDWdMxrFLlCumc8CLFUOxUdVLBb4_Jgws7ZXxyuI_Jl3dvP59-aM4_vf94-ua8cR2H0jhtle6GegolRi3ZKIYBWtcrUFIOUmnN-qHHsQ5mOQpU2IuBW1dfCjnwY_J6rzsvww5HVztLdjJz8jubvptovfnzJ_grcxmvTasF42wVeHkQSPHrgrmYnc8Op8kGjEs2vVS1N9bK_ySh5f8kVdcx2YJSlXzxF7mNSwp1YxVigqlOiAqd7CGXYs510zfjMTCrX8zqF3Prl1rx_O5WbvjfBqkAPQBr5a2cMlwZJrlcx322R7a5muaOhFJaSs1_Av-U0Zc</recordid><startdate>20100914</startdate><enddate>20100914</enddate><creator>Xu, Tai-Xiang</creator><creator>Yao, Wei-Dong</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100914</creationdate><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><author>Xu, Tai-Xiang ; Yao, Wei-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Arousal</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Channel gating</topic><topic>Circuits</topic><topic>Cortex (prefrontal)</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>gamma -Aminobutyric acid</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Interneurons</topic><topic>Ion Channel Gating</topic><topic>Learning</topic><topic>Long term potentiation</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motivation</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmission</topic><topic>Plasticity</topic><topic>Plasticity (synaptic)</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Pyramidal cells</topic><topic>Receptors</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Synapses</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tai-Xiang</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tai-Xiang</au><au>Yao, Wei-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-14</date><risdate>2010</risdate><volume>107</volume><issue>37</issue><spage>16366</spage><epage>16371</epage><pages>16366-16371</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20805489</pmid><doi>10.1073/pnas.1004108107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16366-16371
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_20805489
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Arousal
Biological Sciences
Brain
Channel gating
Circuits
Cortex (prefrontal)
Dopamine
Dopamine D1 receptors
Dopamine D2 receptors
gamma -Aminobutyric acid
gamma-Aminobutyric Acid - metabolism
Interneurons
Ion Channel Gating
Learning
Long term potentiation
Memory
Mice
Mice, Inbred C57BL
Motivation
Neurons
Neuroscience
Neurotransmission
Plasticity
Plasticity (synaptic)
Prefrontal cortex
Prefrontal Cortex - metabolism
Pyramidal cells
Receptors
Receptors, Dopamine D1 - metabolism
Receptors, Dopamine D2 - metabolism
Synapses
Synaptic Transmission
title D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D1%20and%20D2%20dopamine%20receptors%20in%20separate%20circuits%20cooperate%20to%20drive%20associative%20long-term%20potentiation%20in%20the%20prefrontal%20cortex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Tai-Xiang&rft.date=2010-09-14&rft.volume=107&rft.issue=37&rft.spage=16366&rft.epage=16371&rft.pages=16366-16371&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1004108107&rft_dat=%3Cjstor_pubme%3E20779669%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751417544&rft_id=info:pmid/20805489&rft_jstor_id=20779669&rfr_iscdi=true