Loading…
D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex
Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fiel...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (37), p.16366-16371 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303 |
container_end_page | 16371 |
container_issue | 37 |
container_start_page | 16366 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Xu, Tai-Xiang Yao, Wei-Dong |
description | Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary. |
doi_str_mv | 10.1073/pnas.1004108107 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20805489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779669</jstor_id><sourcerecordid>20779669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</originalsourceid><addsrcrecordid>eNqNks9vFSEQx4nR2Gf17ElDvHhaOywsLBcT0_oraeJFz4Rlpy0v-2AFttGbf7qs79lWL3qBYfjMNzOTLyFPGbxioPjJHGyuEQgGfU3cIxsGmjVSaLhPNgCtanrRiiPyKOctAOiuh4fkqIUeOtHrDflxxqgNIz1r6Rhnu_MBaUKHc4kpUx9oxtkmW5A6n9ziS6Yuxhl_pUqkY_LXSG3O0Xlb1niK4bIpmHZ0jgVDWdMxrFLlCumc8CLFUOxUdVLBb4_Jgws7ZXxyuI_Jl3dvP59-aM4_vf94-ua8cR2H0jhtle6GegolRi3ZKIYBWtcrUFIOUmnN-qHHsQ5mOQpU2IuBW1dfCjnwY_J6rzsvww5HVztLdjJz8jubvptovfnzJ_grcxmvTasF42wVeHkQSPHrgrmYnc8Op8kGjEs2vVS1N9bK_ySh5f8kVdcx2YJSlXzxF7mNSwp1YxVigqlOiAqd7CGXYs510zfjMTCrX8zqF3Prl1rx_O5WbvjfBqkAPQBr5a2cMlwZJrlcx322R7a5muaOhFJaSs1_Av-U0Zc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751417544</pqid></control><display><type>article</type><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xu, Tai-Xiang ; Yao, Wei-Dong</creator><creatorcontrib>Xu, Tai-Xiang ; Yao, Wei-Dong</creatorcontrib><description>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1004108107</identifier><identifier>PMID: 20805489</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arousal ; Biological Sciences ; Brain ; Channel gating ; Circuits ; Cortex (prefrontal) ; Dopamine ; Dopamine D1 receptors ; Dopamine D2 receptors ; gamma -Aminobutyric acid ; gamma-Aminobutyric Acid - metabolism ; Interneurons ; Ion Channel Gating ; Learning ; Long term potentiation ; Memory ; Mice ; Mice, Inbred C57BL ; Motivation ; Neurons ; Neuroscience ; Neurotransmission ; Plasticity ; Plasticity (synaptic) ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Pyramidal cells ; Receptors ; Receptors, Dopamine D1 - metabolism ; Receptors, Dopamine D2 - metabolism ; Synapses ; Synaptic Transmission</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16366-16371</ispartof><rights>Copyright National Academy of Sciences Sep 14, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</citedby><cites>FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779669$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779669$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20805489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Tai-Xiang</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</description><subject>Animals</subject><subject>Arousal</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Channel gating</subject><subject>Circuits</subject><subject>Cortex (prefrontal)</subject><subject>Dopamine</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine D2 receptors</subject><subject>gamma -Aminobutyric acid</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Interneurons</subject><subject>Ion Channel Gating</subject><subject>Learning</subject><subject>Long term potentiation</subject><subject>Memory</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motivation</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmission</subject><subject>Plasticity</subject><subject>Plasticity (synaptic)</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Pyramidal cells</subject><subject>Receptors</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Dopamine D2 - metabolism</subject><subject>Synapses</subject><subject>Synaptic Transmission</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNks9vFSEQx4nR2Gf17ElDvHhaOywsLBcT0_oraeJFz4Rlpy0v-2AFttGbf7qs79lWL3qBYfjMNzOTLyFPGbxioPjJHGyuEQgGfU3cIxsGmjVSaLhPNgCtanrRiiPyKOctAOiuh4fkqIUeOtHrDflxxqgNIz1r6Rhnu_MBaUKHc4kpUx9oxtkmW5A6n9ziS6Yuxhl_pUqkY_LXSG3O0Xlb1niK4bIpmHZ0jgVDWdMxrFLlCumc8CLFUOxUdVLBb4_Jgws7ZXxyuI_Jl3dvP59-aM4_vf94-ua8cR2H0jhtle6GegolRi3ZKIYBWtcrUFIOUmnN-qHHsQ5mOQpU2IuBW1dfCjnwY_J6rzsvww5HVztLdjJz8jubvptovfnzJ_grcxmvTasF42wVeHkQSPHrgrmYnc8Op8kGjEs2vVS1N9bK_ySh5f8kVdcx2YJSlXzxF7mNSwp1YxVigqlOiAqd7CGXYs510zfjMTCrX8zqF3Prl1rx_O5WbvjfBqkAPQBr5a2cMlwZJrlcx322R7a5muaOhFJaSs1_Av-U0Zc</recordid><startdate>20100914</startdate><enddate>20100914</enddate><creator>Xu, Tai-Xiang</creator><creator>Yao, Wei-Dong</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100914</creationdate><title>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</title><author>Xu, Tai-Xiang ; Yao, Wei-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Arousal</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Channel gating</topic><topic>Circuits</topic><topic>Cortex (prefrontal)</topic><topic>Dopamine</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine D2 receptors</topic><topic>gamma -Aminobutyric acid</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Interneurons</topic><topic>Ion Channel Gating</topic><topic>Learning</topic><topic>Long term potentiation</topic><topic>Memory</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motivation</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmission</topic><topic>Plasticity</topic><topic>Plasticity (synaptic)</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Pyramidal cells</topic><topic>Receptors</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Dopamine D2 - metabolism</topic><topic>Synapses</topic><topic>Synaptic Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tai-Xiang</creatorcontrib><creatorcontrib>Yao, Wei-Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tai-Xiang</au><au>Yao, Wei-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-14</date><risdate>2010</risdate><volume>107</volume><issue>37</issue><spage>16366</spage><epage>16371</epage><pages>16366-16371</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing—dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at+30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20805489</pmid><doi>10.1073/pnas.1004108107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (37), p.16366-16371 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_20805489 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Arousal Biological Sciences Brain Channel gating Circuits Cortex (prefrontal) Dopamine Dopamine D1 receptors Dopamine D2 receptors gamma -Aminobutyric acid gamma-Aminobutyric Acid - metabolism Interneurons Ion Channel Gating Learning Long term potentiation Memory Mice Mice, Inbred C57BL Motivation Neurons Neuroscience Neurotransmission Plasticity Plasticity (synaptic) Prefrontal cortex Prefrontal Cortex - metabolism Pyramidal cells Receptors Receptors, Dopamine D1 - metabolism Receptors, Dopamine D2 - metabolism Synapses Synaptic Transmission |
title | D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D1%20and%20D2%20dopamine%20receptors%20in%20separate%20circuits%20cooperate%20to%20drive%20associative%20long-term%20potentiation%20in%20the%20prefrontal%20cortex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20Tai-Xiang&rft.date=2010-09-14&rft.volume=107&rft.issue=37&rft.spage=16366&rft.epage=16371&rft.pages=16366-16371&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1004108107&rft_dat=%3Cjstor_pubme%3E20779669%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-c9a795b9a7474d961d4bb02c870766b679918b8ed805a3e4e7e84b3ac5a37e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751417544&rft_id=info:pmid/20805489&rft_jstor_id=20779669&rfr_iscdi=true |