Loading…

Personalized Tooth Shape Estimation From Radiograph and Cast

Three-dimensional geometric information of teeth is usually needed in pre- and postoperative diagnoses of orthodontic dentistry. The computerized tomography can provide comprehensive 3-D teeth geometries. However, there is still a discussion on computed tomography (CT) as a routine in orthodontic de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2012-09, Vol.59 (9), p.2400-2411
Main Authors: Pei, Yuru, Shi, Fuhao, Chen, Hua, Wei, Jia, Zha, Hongbin, Jiang, Ruoping, Xu, Tianmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional geometric information of teeth is usually needed in pre- and postoperative diagnoses of orthodontic dentistry. The computerized tomography can provide comprehensive 3-D teeth geometries. However, there is still a discussion on computed tomography (CT) as a routine in orthodontic dentistry due to radiation dose. Moreover, the CT is useless when a dentist needs to extract 3-D structures from old archive files with only radiographs and casts, where patient's teeth changed ever since. In this paper, we propose a reconstruction framework for patient-specific teeth based on an integration of 2-D radiographs and digitized casts. The reconstruction is under a template-fitting framework. The shape and orientation of teeth templates are tuned in accordance with patient's radiographs. Specially, the tooth root morphology is controlled by 2-D contours in radiographs. With ray tracing and a contour plane assumption, 2-D root contours in radiographs are projected back to 3-D space, and guide tooth root deformations. Moreover, the template's crown is deformed nonrigidly to fit digitized casts that bear patient's crown details. The system allows 3-D tooth reconstruction with patient-specific geometric details from just casts and 2-D radiographs.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2011.2174993