Loading…
Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy
The endosymbiotic relationship between coral hosts and dinoflagellates of the genus Symbiodinium is critical for the growth and productivity of coral reef ecosystems. Here, synchrotron radiation-based infrared microspectroscopy was applied to examine metabolite concentration differences between endo...
Saved in:
Published in: | Biology letters (2005) 2012-06, Vol.8 (3), p.434-437 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The endosymbiotic relationship between coral hosts and dinoflagellates of the genus Symbiodinium is critical for the growth and productivity of coral reef ecosystems. Here, synchrotron radiation-based infrared microspectroscopy was applied to examine metabolite concentration differences between endosymbiotic (within the anemone Aiptasia pulchella) and free-living Symbiodinium over the light–dark cycle. Significant differences in levels of lipids, nitrogenous compounds, polysaccharides and putative cell wall components were documented. Compared with free-living Symbiodinium, total lipids, unsaturated lipids and polysaccharides were relatively enriched in endosymbiotic Symbiodinium during both light and dark photoperiods. Concentrations of cell wall-related metabolites did not vary temporally in endosymbiotic samples; in contrast, the concentrations of these metabolites increased dramatically during the dark photoperiod in free-living samples, possibly reflecting rhythmic cell-wall synthesis related to light-driven cell proliferation. The level of nitrogenous compounds in endosymbiotic cells did not vary greatly across the light–dark cycle and in general was significantly lower than that observed in free-living samples collected during the light. Collectively, these data suggest that nitrogen limitation is a factor that the host cell exploits to induce the biosynthesis of lipids and polysaccharides in endosymbiotic Symbiodinium. |
---|---|
ISSN: | 1744-9561 1744-957X |
DOI: | 10.1098/rsbl.2011.0893 |