Loading…
Type II₁ factors satisfying the spatial isomorphism conjecture
This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38–54] that a von Neumann algebra M on a Hilbert space [Formula] should be unitarily equivalent to each sufficiently close von Neumann algebra N , and, moreover, the implementing unitary c...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (50), p.20338-20343 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses a conjecture in the work by Kadison and Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38–54] that a von Neumann algebra M on a Hilbert space [Formula] should be unitarily equivalent to each sufficiently close von Neumann algebra N , and, moreover, the implementing unitary can be chosen to be close to the identity operator. This conjecture is known to be true for amenable von Neumann algebras, and in this paper, we describe classes of nonamenable factors for which the conjecture is valid. These classes are based on tensor products of the hyperfinite II ₁ factor with crossed products of abelian algebras by suitably chosen discrete groups. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1217792109 |