Loading…
Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons
Using first-principles calculations and deformation potential theory, we investigate the intrinsic carrier mobility (μ) of monolayer MoS2 sheet and nanoribbons. In contrast to the dramatic deterioration of μ in graphene upon forming nanoribbons, the magnitude of μ in armchair MoS2 nanoribbons is com...
Saved in:
Published in: | Journal of the American Chemical Society 2014-04, Vol.136 (17), p.6269-6275 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using first-principles calculations and deformation potential theory, we investigate the intrinsic carrier mobility (μ) of monolayer MoS2 sheet and nanoribbons. In contrast to the dramatic deterioration of μ in graphene upon forming nanoribbons, the magnitude of μ in armchair MoS2 nanoribbons is comparable to its sheet counterpart, albeit oscillating with ribbon width. Surprisingly, a room-temperature transport polarity reversal is observed with μ of hole (h) and electron (e) being 200.52 (h) and 72.16 (e) cm2 V–1 s–1 in sheet, and 49.72 (h) and 190.89 (e) cm2 V–1 s–1 in 4 nm nanoribbon. The high and robust μ and its polarity reversal are attributable to the different characteristics of edge states inherent in MoS2 nanoribbons. Our study suggests that width reduction together with edge engineering provide a promising route for improving the transport properties of MoS2 nanostructures. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja4109787 |