Loading…

Nanostructured conductive polymers for advanced energy storage

Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterp...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Society reviews 2015-10, Vol.44 (19), p.6684-6696
Main Authors: Shi, Ye, Peng, Lele, Ding, Yu, Zhao, Yu, Yu, Guihua
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions. Nanostructured conductive polymers (nCPs) have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as high electrical conductivity, large surface areas, and shortened pathways for charge/mass transport. These advantageous features make them promising candidates for applications in energy storage devices.
ISSN:0306-0012
1460-4744
DOI:10.1039/c5cs00362h