Loading…

Structural Minimax Probability Machine

Minimax probability machine (MPM) is an interesting discriminative classifier based on generative prior knowledge. It can directly estimate the probabilistic accuracy bound by minimizing the maximum probability of misclassification. The structural information of data is an effective way to represent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2017-07, Vol.28 (7), p.1646-1656
Main Authors: Bin Gu, Xingming Sun, Sheng, Victor S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Minimax probability machine (MPM) is an interesting discriminative classifier based on generative prior knowledge. It can directly estimate the probabilistic accuracy bound by minimizing the maximum probability of misclassification. The structural information of data is an effective way to represent prior knowledge, and has been found to be vital for designing classifiers in real-world problems. However, MPM only considers the prior probability distribution of each class with a given mean and covariance matrix, which does not efficiently exploit the structural information of data. In this paper, we use two finite mixture models to capture the structural information of the data from binary classification. For each subdistribution in a finite mixture model, only its mean and covariance matrix are assumed to be known. Based on the finite mixture models, we propose a structural MPM (SMPM). SMPM can be solved effectively by a sequence of the second-order cone programming problems. Moreover, we extend a linear model of SMPM to a nonlinear model by exploiting kernelization techniques. We also show that the SMPM can be interpreted as a large margin classifier and can be transformed to support vector machine and maxi-min margin machine under certain special conditions. Experimental results on both synthetic and real-world data sets demonstrate the effectiveness of SMPM.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2016.2544779