Loading…

Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification

Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the t...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2018-06, Vol.18 (13), p.1914-192
Main Authors: Guo, Song, Lin, Weikang Nicholas, Hu, Yuwei, Sun, Guoyun, Phan, Dinh-Tuan, Chen, Chia-Hung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification. An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.
ISSN:1473-0197
1473-0189
DOI:10.1039/c8lc00390d