Loading…
Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification
Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the t...
Saved in:
Published in: | Lab on a chip 2018-06, Vol.18 (13), p.1914-192 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3 |
container_end_page | 192 |
container_issue | 13 |
container_start_page | 1914 |
container_title | Lab on a chip |
container_volume | 18 |
creator | Guo, Song Lin, Weikang Nicholas Hu, Yuwei Sun, Guoyun Phan, Dinh-Tuan Chen, Chia-Hung |
description | Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification.
An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal. |
doi_str_mv | 10.1039/c8lc00390d |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29877542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051667287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</originalsourceid><addsrcrecordid>eNpd0UtLxDAQB_Agiu-Ld6XgRYRqkj7SHJf1CYuCuOeS5rGNpE1NUsVvb9ZdV_CUgfkx_DMDwAmCVwhm9JpXhsNYQLEF9lFOshSiim5vakr2wIH3bxCiIi-rXbCHaUVIkeN90M9NcKzVizYNrbPjoh3GkAhnByND0mnurDKjFponQn5oLhNlXeJ1vzAy5dKYaF6eJrEZJA_a9smnDm2ivQ2tdB0zCesGo5XmbNk9AjuKGS-P1-8hmN_dvk4f0tnz_eN0Mkt5RvKQFioGpTE9IaVQvMCM5lnTVBISRXFTZHlTESQEZhITpiBFJaQcxi8pwSPIDsHFau7g7Psofag77ZdxWS_t6GsMC1SWBFck0vN_9M2Oro_plopCTFCZR3W5UnEh3jup6sHpjrmvGsF6eYV6Ws2mP1e4ifhsPXJsOik29HftEZyugPN80_07Y_YNhE2NGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059027164</pqid></control><display><type>article</type><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><source>Royal Society of Chemistry</source><creator>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</creator><creatorcontrib>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</creatorcontrib><description>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification.
An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00390d</identifier><identifier>PMID: 29877542</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amplifiers ; Assaying ; Cascade chemical reactions ; Deoxyribonucleic acid ; DNA ; Encapsulation ; Flow cytometry ; Flow measurement ; Fluorescence ; Gene expression ; Gene sequencing ; Polymerase chain reaction ; Real time ; Ribonucleic acid ; RNA ; Target detection ; Thermal cycling</subject><ispartof>Lab on a chip, 2018-06, Vol.18 (13), p.1914-192</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</citedby><cites>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</cites><orcidid>0000-0001-7060-0173 ; 0000-0003-1975-8981 ; 0000-0002-4442-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29877542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Lin, Weikang Nicholas</creatorcontrib><creatorcontrib>Hu, Yuwei</creatorcontrib><creatorcontrib>Sun, Guoyun</creatorcontrib><creatorcontrib>Phan, Dinh-Tuan</creatorcontrib><creatorcontrib>Chen, Chia-Hung</creatorcontrib><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification.
An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</description><subject>Amplifiers</subject><subject>Assaying</subject><subject>Cascade chemical reactions</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Encapsulation</subject><subject>Flow cytometry</subject><subject>Flow measurement</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Polymerase chain reaction</subject><subject>Real time</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Target detection</subject><subject>Thermal cycling</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAQB_Agiu-Ld6XgRYRqkj7SHJf1CYuCuOeS5rGNpE1NUsVvb9ZdV_CUgfkx_DMDwAmCVwhm9JpXhsNYQLEF9lFOshSiim5vakr2wIH3bxCiIi-rXbCHaUVIkeN90M9NcKzVizYNrbPjoh3GkAhnByND0mnurDKjFponQn5oLhNlXeJ1vzAy5dKYaF6eJrEZJA_a9smnDm2ivQ2tdB0zCesGo5XmbNk9AjuKGS-P1-8hmN_dvk4f0tnz_eN0Mkt5RvKQFioGpTE9IaVQvMCM5lnTVBISRXFTZHlTESQEZhITpiBFJaQcxi8pwSPIDsHFau7g7Psofag77ZdxWS_t6GsMC1SWBFck0vN_9M2Oro_plopCTFCZR3W5UnEh3jup6sHpjrmvGsF6eYV6Ws2mP1e4ifhsPXJsOik29HftEZyugPN80_07Y_YNhE2NGw</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Guo, Song</creator><creator>Lin, Weikang Nicholas</creator><creator>Hu, Yuwei</creator><creator>Sun, Guoyun</creator><creator>Phan, Dinh-Tuan</creator><creator>Chen, Chia-Hung</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7060-0173</orcidid><orcidid>https://orcid.org/0000-0003-1975-8981</orcidid><orcidid>https://orcid.org/0000-0002-4442-3203</orcidid></search><sort><creationdate>20180626</creationdate><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><author>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplifiers</topic><topic>Assaying</topic><topic>Cascade chemical reactions</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Encapsulation</topic><topic>Flow cytometry</topic><topic>Flow measurement</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Polymerase chain reaction</topic><topic>Real time</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Target detection</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Lin, Weikang Nicholas</creatorcontrib><creatorcontrib>Hu, Yuwei</creatorcontrib><creatorcontrib>Sun, Guoyun</creatorcontrib><creatorcontrib>Phan, Dinh-Tuan</creatorcontrib><creatorcontrib>Chen, Chia-Hung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Song</au><au>Lin, Weikang Nicholas</au><au>Hu, Yuwei</au><au>Sun, Guoyun</au><au>Phan, Dinh-Tuan</au><au>Chen, Chia-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>18</volume><issue>13</issue><spage>1914</spage><epage>192</epage><pages>1914-192</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification.
An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29877542</pmid><doi>10.1039/c8lc00390d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7060-0173</orcidid><orcidid>https://orcid.org/0000-0003-1975-8981</orcidid><orcidid>https://orcid.org/0000-0002-4442-3203</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2018-06, Vol.18 (13), p.1914-192 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_pubmed_primary_29877542 |
source | Royal Society of Chemistry |
subjects | Amplifiers Assaying Cascade chemical reactions Deoxyribonucleic acid DNA Encapsulation Flow cytometry Flow measurement Fluorescence Gene expression Gene sequencing Polymerase chain reaction Real time Ribonucleic acid RNA Target detection Thermal cycling |
title | Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh-throughput%20droplet%20microfluidic%20device%20for%20single-cell%20miRNA%20detection%20with%20isothermal%20amplification&rft.jtitle=Lab%20on%20a%20chip&rft.au=Guo,%20Song&rft.date=2018-06-26&rft.volume=18&rft.issue=13&rft.spage=1914&rft.epage=192&rft.pages=1914-192&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00390d&rft_dat=%3Cproquest_pubme%3E2051667287%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2059027164&rft_id=info:pmid/29877542&rfr_iscdi=true |