Loading…

Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification

Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the t...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2018-06, Vol.18 (13), p.1914-192
Main Authors: Guo, Song, Lin, Weikang Nicholas, Hu, Yuwei, Sun, Guoyun, Phan, Dinh-Tuan, Chen, Chia-Hung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3
cites cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3
container_end_page 192
container_issue 13
container_start_page 1914
container_title Lab on a chip
container_volume 18
creator Guo, Song
Lin, Weikang Nicholas
Hu, Yuwei
Sun, Guoyun
Phan, Dinh-Tuan
Chen, Chia-Hung
description Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification. An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.
doi_str_mv 10.1039/c8lc00390d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29877542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051667287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</originalsourceid><addsrcrecordid>eNpd0UtLxDAQB_Agiu-Ld6XgRYRqkj7SHJf1CYuCuOeS5rGNpE1NUsVvb9ZdV_CUgfkx_DMDwAmCVwhm9JpXhsNYQLEF9lFOshSiim5vakr2wIH3bxCiIi-rXbCHaUVIkeN90M9NcKzVizYNrbPjoh3GkAhnByND0mnurDKjFponQn5oLhNlXeJ1vzAy5dKYaF6eJrEZJA_a9smnDm2ivQ2tdB0zCesGo5XmbNk9AjuKGS-P1-8hmN_dvk4f0tnz_eN0Mkt5RvKQFioGpTE9IaVQvMCM5lnTVBISRXFTZHlTESQEZhITpiBFJaQcxi8pwSPIDsHFau7g7Psofag77ZdxWS_t6GsMC1SWBFck0vN_9M2Oro_plopCTFCZR3W5UnEh3jup6sHpjrmvGsF6eYV6Ws2mP1e4ifhsPXJsOik29HftEZyugPN80_07Y_YNhE2NGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059027164</pqid></control><display><type>article</type><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><source>Royal Society of Chemistry</source><creator>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</creator><creatorcontrib>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</creatorcontrib><description>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification. An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00390d</identifier><identifier>PMID: 29877542</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amplifiers ; Assaying ; Cascade chemical reactions ; Deoxyribonucleic acid ; DNA ; Encapsulation ; Flow cytometry ; Flow measurement ; Fluorescence ; Gene expression ; Gene sequencing ; Polymerase chain reaction ; Real time ; Ribonucleic acid ; RNA ; Target detection ; Thermal cycling</subject><ispartof>Lab on a chip, 2018-06, Vol.18 (13), p.1914-192</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</citedby><cites>FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</cites><orcidid>0000-0001-7060-0173 ; 0000-0003-1975-8981 ; 0000-0002-4442-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29877542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Lin, Weikang Nicholas</creatorcontrib><creatorcontrib>Hu, Yuwei</creatorcontrib><creatorcontrib>Sun, Guoyun</creatorcontrib><creatorcontrib>Phan, Dinh-Tuan</creatorcontrib><creatorcontrib>Chen, Chia-Hung</creatorcontrib><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification. An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</description><subject>Amplifiers</subject><subject>Assaying</subject><subject>Cascade chemical reactions</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Encapsulation</subject><subject>Flow cytometry</subject><subject>Flow measurement</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Polymerase chain reaction</subject><subject>Real time</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Target detection</subject><subject>Thermal cycling</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAQB_Agiu-Ld6XgRYRqkj7SHJf1CYuCuOeS5rGNpE1NUsVvb9ZdV_CUgfkx_DMDwAmCVwhm9JpXhsNYQLEF9lFOshSiim5vakr2wIH3bxCiIi-rXbCHaUVIkeN90M9NcKzVizYNrbPjoh3GkAhnByND0mnurDKjFponQn5oLhNlXeJ1vzAy5dKYaF6eJrEZJA_a9smnDm2ivQ2tdB0zCesGo5XmbNk9AjuKGS-P1-8hmN_dvk4f0tnz_eN0Mkt5RvKQFioGpTE9IaVQvMCM5lnTVBISRXFTZHlTESQEZhITpiBFJaQcxi8pwSPIDsHFau7g7Psofag77ZdxWS_t6GsMC1SWBFck0vN_9M2Oro_plopCTFCZR3W5UnEh3jup6sHpjrmvGsF6eYV6Ws2mP1e4ifhsPXJsOik29HftEZyugPN80_07Y_YNhE2NGw</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Guo, Song</creator><creator>Lin, Weikang Nicholas</creator><creator>Hu, Yuwei</creator><creator>Sun, Guoyun</creator><creator>Phan, Dinh-Tuan</creator><creator>Chen, Chia-Hung</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7060-0173</orcidid><orcidid>https://orcid.org/0000-0003-1975-8981</orcidid><orcidid>https://orcid.org/0000-0002-4442-3203</orcidid></search><sort><creationdate>20180626</creationdate><title>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</title><author>Guo, Song ; Lin, Weikang Nicholas ; Hu, Yuwei ; Sun, Guoyun ; Phan, Dinh-Tuan ; Chen, Chia-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplifiers</topic><topic>Assaying</topic><topic>Cascade chemical reactions</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Encapsulation</topic><topic>Flow cytometry</topic><topic>Flow measurement</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Polymerase chain reaction</topic><topic>Real time</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Target detection</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Lin, Weikang Nicholas</creatorcontrib><creatorcontrib>Hu, Yuwei</creatorcontrib><creatorcontrib>Sun, Guoyun</creatorcontrib><creatorcontrib>Phan, Dinh-Tuan</creatorcontrib><creatorcontrib>Chen, Chia-Hung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Song</au><au>Lin, Weikang Nicholas</au><au>Hu, Yuwei</au><au>Sun, Guoyun</au><au>Phan, Dinh-Tuan</au><au>Chen, Chia-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>18</volume><issue>13</issue><spage>1914</spage><epage>192</epage><pages>1914-192</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Analysis of microRNA (miRNA), a pivotal primary regulator of fundamental cellular processes, at the single-cell level is essential to elucidate regulated gene expression precisely. Most single-cell gene sequencing methods use the polymerase chain reaction (PCR) to increase the concentration of the target gene for detection, thus requiring a barcoding process for cell identification and creating a challenge for real-time, large-scale screening of sequences in cells to rapidly profile physiological samples. In this study, a rapid, PCR-free, single-cell miRNA assay is developed from a continuous-flow microfluidic process employing a DNA hybridization chain reaction to amplify the target miRNA signal. Individual cells are encapsulated with DNA amplifiers in water-in-oil droplets and then lysed. The released target miRNA interacts with the DNA amplifiers to trigger hybridization reactions, producing fluorescence signals. Afterward, the target sequences are recycled to trigger a cyclic cascade reaction and significantly amplify the fluorescence signals without using PCR thermal cycling. Multiple DNA amplifiers with distinct fluorescence signals can be encapsulated simultaneously in a droplet to measure multiple miRNAs from a single cell simultaneously. Moreover, this process converts the lab bench PCR assay to a real-time droplet assay with the post-reaction fluorescence signal as a readout to allow flow cytometry-like continuous-flow measurement of sequences in a single cell with an ultrahigh throughput (300-500 cells per minute) for rapid biomedical identification. An ultrahigh-throughput single-cell miRNA assay is developed by a continuous-flow microfluidic process employing isothermal amplification to amplify the target miRNA signal.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29877542</pmid><doi>10.1039/c8lc00390d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7060-0173</orcidid><orcidid>https://orcid.org/0000-0003-1975-8981</orcidid><orcidid>https://orcid.org/0000-0002-4442-3203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2018-06, Vol.18 (13), p.1914-192
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmed_primary_29877542
source Royal Society of Chemistry
subjects Amplifiers
Assaying
Cascade chemical reactions
Deoxyribonucleic acid
DNA
Encapsulation
Flow cytometry
Flow measurement
Fluorescence
Gene expression
Gene sequencing
Polymerase chain reaction
Real time
Ribonucleic acid
RNA
Target detection
Thermal cycling
title Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh-throughput%20droplet%20microfluidic%20device%20for%20single-cell%20miRNA%20detection%20with%20isothermal%20amplification&rft.jtitle=Lab%20on%20a%20chip&rft.au=Guo,%20Song&rft.date=2018-06-26&rft.volume=18&rft.issue=13&rft.spage=1914&rft.epage=192&rft.pages=1914-192&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00390d&rft_dat=%3Cproquest_pubme%3E2051667287%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-5f5469473776dfc52a943bb8e07f92b534b871dd2ae27af091609c0754fdc92b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2059027164&rft_id=info:pmid/29877542&rfr_iscdi=true