Loading…

Impedance-Based Gaussian Processes for Modeling Human Motor Behavior in Physical and Non-Physical Interaction

Objective: Modeling of human motor intention plays an essential role in predictively controlling a robotic system in human-robot interaction tasks. In most machine learning techniques, human motor behavior is modeled as a generic stochastic process. However, the integration of a priori knowledge abo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2019-09, Vol.66 (9), p.2499-2511
Main Authors: Medina, Jose R., Borner, Hendrik, Endo, Satoshi, Hirche, Sandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Modeling of human motor intention plays an essential role in predictively controlling a robotic system in human-robot interaction tasks. In most machine learning techniques, human motor behavior is modeled as a generic stochastic process. However, the integration of a priori knowledge about underlying system structures can provide insights on otherwise unobservable intrinsic states that yield the superior prediction performance and increased generalization capabilities. Methods: We present a novel method for modeling human motor behavior that explicitly includes a neuroscientifically supported model of human motor control, in which the dynamics of the human arm are modeled by a mechanical impedance that tracks a latent desired trajectory. We adopt a Bayesian setting by defining Gaussian process (GP) priors for the impedance elements and the latent desired trajectory. This enables exploitation of a priori human arm impedance knowledge for regression of interaction forces through inference of a latent desired human trajectory. Results: The method is validated using simulated data, with particular focus on effects of GP prior parameterization and intention estimation capabilities. The superior prediction performance is shown with respect to a naive GP prior. An experiment with human participants evaluates generalization capabilities and effects of training data sparsity. Conclusion: We derive the correlations of an impedance-based GP model of human motor behavior that exploits a priori knowledge. Significance: The model effectively predicts interaction forces by inferring a latent desired human trajectory in previously observed as well as unobserved regions of the input space.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2018.2890710