Loading…
Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering
Mimicking the hierarchical microarchitecture of native myocardium in vitro plays an important role in cardiac tissue engineering. Here we present a novel strategy to produce multiscale conductive scaffolds with layer-specific fiber orientations for cardiac regeneration by combining solution-based an...
Saved in:
Published in: | Nanoscale 2019-08, Vol.11 (32), p.15195-1525 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mimicking the hierarchical microarchitecture of native myocardium
in vitro
plays an important role in cardiac tissue engineering. Here we present a novel strategy to produce multiscale conductive scaffolds with layer-specific fiber orientations for cardiac regeneration by combining solution-based and melt-based electrohydrodynamic (EHD) printing techniques. Polycaprolactone (PCL) microfibers were printed by melt-based EHD printing and the fiber orientation was flexibly controlled in a layer-by-layer manner according to user-specific design. The as-printed microfibrous scaffolds can provide the seeded cells necessary contact cues to guide layer-specific cellular alignments. Sub-microscale conductive fibers were simultaneously incorporated inside the well-organized PCL scaffolds by solution-based EHD printing, which significantly improved the conductivity as well as the cellular adhesion and proliferation capacity. The multiscale conductive scaffolds can further direct the multiple-layer alignments of primary cardiomyocytes and facilitate cardiomyocyte-specific gene expressions, which exhibited enhanced synchronous beating behavior compared with pure microfibrous scaffolds. It is envisioned that the proposed hybrid EHD printing technique might provide a promising strategy to fabricate multifunctional micro/nanofibrous scaffolds with biomimetic architectures, electrical conductivity and even biosensing properties for the regeneration of electroactive tissues.
Here a novel strategy was presented to fabricate multiscale conductive scaffolds with layer-specific fiber orientations for cardiac tissue engineering by combining solution-based and melt-based electrohydrodynamic (EHD) printing techniques. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr04989d |