Loading…

EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques

Ischemic stroke is a major cause of death and disability in adulthood worldwide. Because it has highly heterogeneous phenotypes, phenotyping of ischemic stroke is an essential task for medical research and clinical prognostication. However, this task is not a trivial one when the study population is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2020-10, Vol.24 (10), p.2922-2931
Main Authors: Sung, Sheng-Feng, Lin, Chia-Yi, Hu, Ya-Han
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ischemic stroke is a major cause of death and disability in adulthood worldwide. Because it has highly heterogeneous phenotypes, phenotyping of ischemic stroke is an essential task for medical research and clinical prognostication. However, this task is not a trivial one when the study population is large. Phenotyping of ischemic stroke depends primarily on manual annotation of medical records in previous studies. This article evaluated various strategies for automated phenotyping of ischemic stroke into the four subtypes of the Oxfordshire Community Stroke Project classification based on structured and unstructured data from electronical medical records (EMRs). A total of 4640 adult patients who were hospitalized for acute ischemic stroke in a teaching hospital were included. In addition to the structured items in the National Institutes of Health Stroke Scale, unstructured clinical narratives were preprocessed using MetaMap to identify medical concepts, which were then encoded into feature vectors. Various supervised machine learning algorithms were used to build classifiers. The study results indicate that textual information from EMRs could facilitate phenotyping of ischemic stroke when this information was combined with structured information. Furthermore, decomposition of this multi-class problem into binary classification tasks followed by aggregation of classification results could improve the performance.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2020.2976931