Loading…
Prolonged inhibitory effects against planktonic growth, adherence, and biofilm formation of pathogens causing ventilator-associated pneumonia using a novel polyamide/silver nanoparticle composite-coated endotracheal tube
Microbial cells can rapidly form biofilm on endotracheal tubes (ETT) causing ventilator-associated pneumonia, a serious complication in patients receiving mechanical ventilation. A novel polyamide with a good balance of hydrophilic/hydrophobic moieties was used for the embedment of green-reduction s...
Saved in:
Published in: | Biofouling (Chur, Switzerland) Switzerland), 2020-03, Vol.36 (3), p.292-307 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial cells can rapidly form biofilm on endotracheal tubes (ETT) causing ventilator-associated pneumonia, a serious complication in patients receiving mechanical ventilation. A novel polyamide with a good balance of hydrophilic/hydrophobic moieties was used for the embedment of green-reduction silver nanoparticles (AgNPs) for the composite-coated ETT. The films were conformal with a thickness of ∼ 17 ± 3 µm accommodating high loading of 60 ± 35 nm spherical-shaped AgNPs. The coated ETT resulted in a significant difference in reducing both planktonic growth and microbial adhesion of single and mixed-species cultures, compared with uncoated ETT (p 96% after incubation for 72 h. Polyamide/AgNP composite-coated ETT provided a broad-spectrum activity against both Gram-positive and Gram-negative bacteria as well as Candida albicans and prolonged antimicrobial activity. |
---|---|
ISSN: | 0892-7014 1029-2454 |
DOI: | 10.1080/08927014.2020.1759041 |