Loading…

Constant rate shearing on two-dimensional cohesive discs

We performed two-dimensional molecular dynamics simulations of cohesive discs under shear. The cohesion between the discs is added by the action of springs between very next neighbouring discs, modelling capillary forces. The geometry of the cell allows disc-disc shearing and not disc-cell wall shea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2005-09, Vol.17 (37), p.5677-5686
Main Authors: Olivi-Tran, N, Pozo, O, Fraysse, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We performed two-dimensional molecular dynamics simulations of cohesive discs under shear. The cohesion between the discs is added by the action of springs between very next neighbouring discs, modelling capillary forces. The geometry of the cell allows disc-disc shearing and not disc-cell wall shearing as is commonly found in the literature. Does a stick-slip phenomenon happen though the upper cover moves at a constant velocity, i.e. with an infinite shearing force? We measured the forces with which the discs acted on the upper cover for different shearing rates, as well as the disc velocities as a function of the distance to the bottom of the cell. It appears that the forces measured versus time present a periodic behaviour, very close to a stick-slip phenomenon, for shearing rates larger than a given threshold. The discs' collective displacements in the shearing cell (back and ahead) are the counterpart of the constant velocity of the upper cover, leading to a periodic behaviour of the shear stress.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/17/37/006