Loading…
Constant rate shearing on two-dimensional cohesive discs
We performed two-dimensional molecular dynamics simulations of cohesive discs under shear. The cohesion between the discs is added by the action of springs between very next neighbouring discs, modelling capillary forces. The geometry of the cell allows disc-disc shearing and not disc-cell wall shea...
Saved in:
Published in: | Journal of physics. Condensed matter 2005-09, Vol.17 (37), p.5677-5686 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We performed two-dimensional molecular dynamics simulations of cohesive discs under shear. The cohesion between the discs is added by the action of springs between very next neighbouring discs, modelling capillary forces. The geometry of the cell allows disc-disc shearing and not disc-cell wall shearing as is commonly found in the literature. Does a stick-slip phenomenon happen though the upper cover moves at a constant velocity, i.e. with an infinite shearing force? We measured the forces with which the discs acted on the upper cover for different shearing rates, as well as the disc velocities as a function of the distance to the bottom of the cell. It appears that the forces measured versus time present a periodic behaviour, very close to a stick-slip phenomenon, for shearing rates larger than a given threshold. The discs' collective displacements in the shearing cell (back and ahead) are the counterpart of the constant velocity of the upper cover, leading to a periodic behaviour of the shear stress. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/17/37/006 |