Loading…

Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning

In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-01, Vol.154 (4), p.044110-044110
Main Authors: Agarawal, Valay, Roy, Samrendra, Chakraborty, Anish, Maitra, Rahul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3
cites cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3
container_end_page 044110
container_issue 4
container_start_page 044110
container_title The Journal of chemical physics
container_volume 154
creator Agarawal, Valay
Roy, Samrendra
Chakraborty, Anish
Maitra, Rahul
description In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.
doi_str_mv 10.1063/5.0037090
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33514076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483813795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</originalsourceid><addsrcrecordid>eNp90MtK7TAUBuAgim4vg_MCh4ATFaorWb1lKOINBCc6Lmm6qpU07Ulaxbc3urcKR3CUQb78K-tn7I-AYwE5nmTHAFiAgjW2EFCqpMgVrLMFgBSJyiHfYtshPAGAKGS6ybYQM5FCkS-YPjWGLHk9de6Bm2EeLTXc2DlM5LnR1sw23g0u8JdueuRucLZzpD1vXp3uOxO4dg0P80j-uQvxba_NYxTcRuRi6C7baLUNtLc6d9j9xfnd2VVyc3t5fXZ6kxgscUpIKwSFuq2lpBqMErImQ0ipSVvIwTRZ2uRpq2ShQJR1XWKTIYoCZU6UatxhB8vc0Q__ZgpT1Xch7ma1o2EOlUxLLAUWKot0_z_6NMzexd-9KykFyrKM6nCpjB9C8NRWo-967V8rAdV771VWrXqP9u8qca57ar7kZ9ERHC1BMN30UeiXeR78d1I1Nu1v-OfoNze1mbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482213288</pqid></control><display><type>article</type><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</creator><creatorcontrib>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</creatorcontrib><description>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0037090</identifier><identifier>PMID: 33514076</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplitudes ; Clusters ; Computing time ; Excitation ; Iterative methods ; Machine learning ; Nonlinear analysis ; Nonlinear dynamics ; Polynomials ; Regression analysis ; Regression models</subject><ispartof>The Journal of chemical physics, 2021-01, Vol.154 (4), p.044110-044110</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</citedby><cites>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</cites><orcidid>0000-0003-2989-8013 ; 0000-0002-1068-4667 ; 0000-0002-3255-3115 ; 0000-0002-2214-1002 ; 0000000210684667 ; 0000000329898013 ; 0000000222141002 ; 0000000232553115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0037090$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33514076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agarawal, Valay</creatorcontrib><creatorcontrib>Roy, Samrendra</creatorcontrib><creatorcontrib>Chakraborty, Anish</creatorcontrib><creatorcontrib>Maitra, Rahul</creatorcontrib><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</description><subject>Amplitudes</subject><subject>Clusters</subject><subject>Computing time</subject><subject>Excitation</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtK7TAUBuAgim4vg_MCh4ATFaorWb1lKOINBCc6Lmm6qpU07Ulaxbc3urcKR3CUQb78K-tn7I-AYwE5nmTHAFiAgjW2EFCqpMgVrLMFgBSJyiHfYtshPAGAKGS6ybYQM5FCkS-YPjWGLHk9de6Bm2EeLTXc2DlM5LnR1sw23g0u8JdueuRucLZzpD1vXp3uOxO4dg0P80j-uQvxba_NYxTcRuRi6C7baLUNtLc6d9j9xfnd2VVyc3t5fXZ6kxgscUpIKwSFuq2lpBqMErImQ0ipSVvIwTRZ2uRpq2ShQJR1XWKTIYoCZU6UatxhB8vc0Q__ZgpT1Xch7ma1o2EOlUxLLAUWKot0_z_6NMzexd-9KykFyrKM6nCpjB9C8NRWo-967V8rAdV771VWrXqP9u8qca57ar7kZ9ERHC1BMN30UeiXeR78d1I1Nu1v-OfoNze1mbc</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Agarawal, Valay</creator><creator>Roy, Samrendra</creator><creator>Chakraborty, Anish</creator><creator>Maitra, Rahul</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2989-8013</orcidid><orcidid>https://orcid.org/0000-0002-1068-4667</orcidid><orcidid>https://orcid.org/0000-0002-3255-3115</orcidid><orcidid>https://orcid.org/0000-0002-2214-1002</orcidid><orcidid>https://orcid.org/0000000210684667</orcidid><orcidid>https://orcid.org/0000000329898013</orcidid><orcidid>https://orcid.org/0000000222141002</orcidid><orcidid>https://orcid.org/0000000232553115</orcidid></search><sort><creationdate>20210128</creationdate><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><author>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Clusters</topic><topic>Computing time</topic><topic>Excitation</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarawal, Valay</creatorcontrib><creatorcontrib>Roy, Samrendra</creatorcontrib><creatorcontrib>Chakraborty, Anish</creatorcontrib><creatorcontrib>Maitra, Rahul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarawal, Valay</au><au>Roy, Samrendra</au><au>Chakraborty, Anish</au><au>Maitra, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>154</volume><issue>4</issue><spage>044110</spage><epage>044110</epage><pages>044110-044110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33514076</pmid><doi>10.1063/5.0037090</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2989-8013</orcidid><orcidid>https://orcid.org/0000-0002-1068-4667</orcidid><orcidid>https://orcid.org/0000-0002-3255-3115</orcidid><orcidid>https://orcid.org/0000-0002-2214-1002</orcidid><orcidid>https://orcid.org/0000000210684667</orcidid><orcidid>https://orcid.org/0000000329898013</orcidid><orcidid>https://orcid.org/0000000222141002</orcidid><orcidid>https://orcid.org/0000000232553115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-01, Vol.154 (4), p.044110-044110
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_33514076
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Amplitudes
Clusters
Computing time
Excitation
Iterative methods
Machine learning
Nonlinear analysis
Nonlinear dynamics
Polynomials
Regression analysis
Regression models
title Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20coupled%20cluster%20calculations%20with%20nonlinear%20dynamics%20and%20supervised%20machine%20learning&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Agarawal,%20Valay&rft.date=2021-01-28&rft.volume=154&rft.issue=4&rft.spage=044110&rft.epage=044110&rft.pages=044110-044110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0037090&rft_dat=%3Cproquest_pubme%3E2483813795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482213288&rft_id=info:pmid/33514076&rfr_iscdi=true