Loading…
Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning
In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all...
Saved in:
Published in: | The Journal of chemical physics 2021-01, Vol.154 (4), p.044110-044110 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3 |
container_end_page | 044110 |
container_issue | 4 |
container_start_page | 044110 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Agarawal, Valay Roy, Samrendra Chakraborty, Anish Maitra, Rahul |
description | In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy. |
doi_str_mv | 10.1063/5.0037090 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33514076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483813795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</originalsourceid><addsrcrecordid>eNp90MtK7TAUBuAgim4vg_MCh4ATFaorWb1lKOINBCc6Lmm6qpU07Ulaxbc3urcKR3CUQb78K-tn7I-AYwE5nmTHAFiAgjW2EFCqpMgVrLMFgBSJyiHfYtshPAGAKGS6ybYQM5FCkS-YPjWGLHk9de6Bm2EeLTXc2DlM5LnR1sw23g0u8JdueuRucLZzpD1vXp3uOxO4dg0P80j-uQvxba_NYxTcRuRi6C7baLUNtLc6d9j9xfnd2VVyc3t5fXZ6kxgscUpIKwSFuq2lpBqMErImQ0ipSVvIwTRZ2uRpq2ShQJR1XWKTIYoCZU6UatxhB8vc0Q__ZgpT1Xch7ma1o2EOlUxLLAUWKot0_z_6NMzexd-9KykFyrKM6nCpjB9C8NRWo-967V8rAdV771VWrXqP9u8qca57ar7kZ9ERHC1BMN30UeiXeR78d1I1Nu1v-OfoNze1mbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482213288</pqid></control><display><type>article</type><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</creator><creatorcontrib>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</creatorcontrib><description>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0037090</identifier><identifier>PMID: 33514076</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplitudes ; Clusters ; Computing time ; Excitation ; Iterative methods ; Machine learning ; Nonlinear analysis ; Nonlinear dynamics ; Polynomials ; Regression analysis ; Regression models</subject><ispartof>The Journal of chemical physics, 2021-01, Vol.154 (4), p.044110-044110</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</citedby><cites>FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</cites><orcidid>0000-0003-2989-8013 ; 0000-0002-1068-4667 ; 0000-0002-3255-3115 ; 0000-0002-2214-1002 ; 0000000210684667 ; 0000000329898013 ; 0000000222141002 ; 0000000232553115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0037090$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33514076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agarawal, Valay</creatorcontrib><creatorcontrib>Roy, Samrendra</creatorcontrib><creatorcontrib>Chakraborty, Anish</creatorcontrib><creatorcontrib>Maitra, Rahul</creatorcontrib><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</description><subject>Amplitudes</subject><subject>Clusters</subject><subject>Computing time</subject><subject>Excitation</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtK7TAUBuAgim4vg_MCh4ATFaorWb1lKOINBCc6Lmm6qpU07Ulaxbc3urcKR3CUQb78K-tn7I-AYwE5nmTHAFiAgjW2EFCqpMgVrLMFgBSJyiHfYtshPAGAKGS6ybYQM5FCkS-YPjWGLHk9de6Bm2EeLTXc2DlM5LnR1sw23g0u8JdueuRucLZzpD1vXp3uOxO4dg0P80j-uQvxba_NYxTcRuRi6C7baLUNtLc6d9j9xfnd2VVyc3t5fXZ6kxgscUpIKwSFuq2lpBqMErImQ0ipSVvIwTRZ2uRpq2ShQJR1XWKTIYoCZU6UatxhB8vc0Q__ZgpT1Xch7ma1o2EOlUxLLAUWKot0_z_6NMzexd-9KykFyrKM6nCpjB9C8NRWo-967V8rAdV771VWrXqP9u8qca57ar7kZ9ERHC1BMN30UeiXeR78d1I1Nu1v-OfoNze1mbc</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Agarawal, Valay</creator><creator>Roy, Samrendra</creator><creator>Chakraborty, Anish</creator><creator>Maitra, Rahul</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2989-8013</orcidid><orcidid>https://orcid.org/0000-0002-1068-4667</orcidid><orcidid>https://orcid.org/0000-0002-3255-3115</orcidid><orcidid>https://orcid.org/0000-0002-2214-1002</orcidid><orcidid>https://orcid.org/0000000210684667</orcidid><orcidid>https://orcid.org/0000000329898013</orcidid><orcidid>https://orcid.org/0000000222141002</orcidid><orcidid>https://orcid.org/0000000232553115</orcidid></search><sort><creationdate>20210128</creationdate><title>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</title><author>Agarawal, Valay ; Roy, Samrendra ; Chakraborty, Anish ; Maitra, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Clusters</topic><topic>Computing time</topic><topic>Excitation</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarawal, Valay</creatorcontrib><creatorcontrib>Roy, Samrendra</creatorcontrib><creatorcontrib>Chakraborty, Anish</creatorcontrib><creatorcontrib>Maitra, Rahul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarawal, Valay</au><au>Roy, Samrendra</au><au>Chakraborty, Anish</au><au>Maitra, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>154</volume><issue>4</issue><spage>044110</spage><epage>044110</epage><pages>044110-044110</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33514076</pmid><doi>10.1063/5.0037090</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2989-8013</orcidid><orcidid>https://orcid.org/0000-0002-1068-4667</orcidid><orcidid>https://orcid.org/0000-0002-3255-3115</orcidid><orcidid>https://orcid.org/0000-0002-2214-1002</orcidid><orcidid>https://orcid.org/0000000210684667</orcidid><orcidid>https://orcid.org/0000000329898013</orcidid><orcidid>https://orcid.org/0000000222141002</orcidid><orcidid>https://orcid.org/0000000232553115</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-01, Vol.154 (4), p.044110-044110 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_33514076 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Amplitudes Clusters Computing time Excitation Iterative methods Machine learning Nonlinear analysis Nonlinear dynamics Polynomials Regression analysis Regression models |
title | Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20coupled%20cluster%20calculations%20with%20nonlinear%20dynamics%20and%20supervised%20machine%20learning&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Agarawal,%20Valay&rft.date=2021-01-28&rft.volume=154&rft.issue=4&rft.spage=044110&rft.epage=044110&rft.pages=044110-044110&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0037090&rft_dat=%3Cproquest_pubme%3E2483813795%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-ea93093afb22eb0c912bece3e4c4f060cd54d64f9279018bb83d53317326ee4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482213288&rft_id=info:pmid/33514076&rfr_iscdi=true |