Loading…
Tubulin-binding cofactor E-like (TBCEL), the protein product of the mulet gene, is required in the germline for the regulation of inter-flagellar microtubule dynamics during spermatid individualization
Individual sperm cells are resolved from a syncytium during late step of spermiogenesis known as individualization, which is accomplished by an Individualization Complex (IC) composed of 64 investment cones. mulet encodes Tubulin-binding cofactor E-like (TBCEL), suggesting a role for microtubule dyn...
Saved in:
Published in: | Biology open 2020-01 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Individual sperm cells are resolved from a syncytium during late step of spermiogenesis known as individualization, which is accomplished by an Individualization Complex (IC) composed of 64 investment cones. mulet encodes Tubulin-binding cofactor E-like (TBCEL), suggesting a role for microtubule dynamics in individualization. Indeed, a population of ∼100 cytoplasmic microtubules fails to disappear in mulet mutant testes during spermatogenesis. This persistence, detected using epi-fluorescence and electron microscopy, suggests that removal of these microtubules by TBCEL is a prerequisite for individualization. Immunofluorescence reveals TBCEL expression in elongated spermatid cysts. In addition, testes from mulet mutant males were rescued to wild-type using tubulin-Gal4 to drive TBCEL expression, indicating that the mutant phenotype is caused by the lack of TBCEL. Finally, RNAi driven by bam-GAL4 successfully phenocopied mulet, confirming that mulet is required in the germline for individualization. We propose a model in which the cytoplasmic microtubules serve as alternate tracks for investment cones in mulet mutant testes. |
---|---|
ISSN: | 2046-6390 |