Loading…
Physiological characterization of an arginine vasopressin rat model of preeclampsia
Rodent models have contributed greatly to our understanding of preeclampsia (PE) progression in humans, however to-date no model has been able to effectively replicate the clinical presentation of the disease. This study aimed to provide a thorough physiological characterization of the arginine vaso...
Saved in:
Published in: | Systems biology in reproductive medicine 2022-01, Vol.68 (1), p.55-69 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rodent models have contributed greatly to our understanding of preeclampsia (PE) progression in humans, however to-date no model has been able to effectively replicate the clinical presentation of the disease. This study aimed to provide a thorough physiological characterization of the arginine vasopressin (AVP)-induced rat model of PE to determine its applicability in studying the pathophysiology of PE. Female Sprague Dawley rats (n = 24) were separated into four groups (n = 6 per group) viz., pregnant AVP, pregnant saline, non-pregnant AVP, and non-pregnant saline. All animals received a continuous dose of either AVP (150 ng/h) or saline via subcutaneous mini osmotic pumps for 18 days. Full physiological characterization of the model included measuring systolic and diastolic blood pressure, and collecting urine and blood samples for biochemical analysis. AVP infusion significantly increased blood pressure and urinary protein levels in the pregnant rats (p |
---|---|
ISSN: | 1939-6368 1939-6376 |
DOI: | 10.1080/19396368.2021.1981486 |