Loading…
AL-Net: Attention Learning Network Based on Multi-Task Learning for Cervical Nucleus Segmentation
Cervical nucleus segmentation is a crucial and challenging issue in automatic pathological diagnosis due to uneven staining, blurry boundaries, and adherent or overlapping nuclei in nucleus images. To overcome the limitation of current methods, we propose a multi-task network based on U-Net for cerv...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2022-06, Vol.26 (6), p.2693-2702 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cervical nucleus segmentation is a crucial and challenging issue in automatic pathological diagnosis due to uneven staining, blurry boundaries, and adherent or overlapping nuclei in nucleus images. To overcome the limitation of current methods, we propose a multi-task network based on U-Net for cervical nucleus segmentation. This network consists of a primary task and an auxiliary task. The primary task is employed to predict nuclei regions. The auxiliary task, which predicts the boundaries of nuclei, is designed to improve the feature extraction of the main task. Furthermore, a context encoding layer is added behind each encoding layer of the U-Net. The output of each context encoding layer is processed by an attention learning module and then fused with the features of the decoding layer. In addition, a codec block is used in the attention learning module to obtain saliency-based attention and focused attention simultaneously. Experiment results show that the proposed network performs better than the state-of-the-art methods on the 2014 ISBI dataset, BNS, MoNuSeg, and our nucluesSeg dataset. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2021.3136568 |