Loading…

Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control

Objective: Persons with normal arm function can perform complex wrist and hand movements over a wide range of limb positions. However, for those with transradial amputation who use myoelectric prostheses, control across multiple limb positions can be challenging, frustrating, and can increase the li...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2022-07, Vol.69 (7), p.2243-2255
Main Authors: Williams, Heather, Shehata, Ahmed W., Dawson, Michael, Scheme, Erik, Hebert, Jacqueline, Pilarski, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Persons with normal arm function can perform complex wrist and hand movements over a wide range of limb positions. However, for those with transradial amputation who use myoelectric prostheses, control across multiple limb positions can be challenging, frustrating, and can increase the likelihood of device abandonment. In response, the goal of this research was to investigate convolutional neural network (RCNN)-based position-aware myoelectric prosthesis control strategies. Methods: Surface electromyographic (EMG) and inertial measurement unit (IMU) signals, obtained from 16 non-disabled participants wearing two Myo armbands, served as inputs to RCNN classification and regression models. Such models predicted movements (wrist flexion/extension and forearm pronation/supination), based on a multi-limb-position training routine. RCNN classifiers and RCNN regressors were compared to linear discriminant analysis (LDA) classifiers and support vector regression (SVR) regressors, respectively. Outcomes were examined to determine whether RCNN-based control strategies could yield accurate movement predictions, while using the fewest number of available Myo armband data streams. Results: An RCNN classifier (trained with forearm EMG data, and forearm and upper arm IMU data) predicted movements with 99.00% accuracy (versus the LDA's 97.67%). An RCNN regressor (trained with forearm EMG and IMU data) predicted movements with R 2 values of 84.93% for wrist flexion/extension and 84.97% for forearm pronation/supination (versus the SVR's 77.26% and 60.73%, respectively). The control strategies that employed these models required fewer than all available data streams. Conclusion: RCNN-based control strategies offer novel means of mitigating limb position challenges. Significance: This research furthers the development of improved position-aware myoelectric prosthesis control.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2022.3140269