Loading…
Deletion of the ATP20 gene in Ustilago maydis produces an unstable dimer of F 1 F O -ATP synthase associated with a decrease in mitochondrial ATP synthesis and a high H 2 O 2 production
The F F -ATP synthase uses the energy stored in the electrochemical proton gradient to synthesize ATP. This complex is found in the inner mitochondrial membrane as a monomer and dimer. The dimer shows higher ATPase activity than the monomer and is essential for cristae folding. The monomer-monomer i...
Saved in:
Published in: | Biochimica et biophysica acta. Bioenergetics 2023-04, Vol.1864 (2), p.148950 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The F
F
-ATP synthase uses the energy stored in the electrochemical proton gradient to synthesize ATP. This complex is found in the inner mitochondrial membrane as a monomer and dimer. The dimer shows higher ATPase activity than the monomer and is essential for cristae folding. The monomer-monomer interface is constituted by subunits a, i/j, e, g, and k. The role of the subunit g in a strict respiratory organism is unknown. A gene knockout was generated in Ustilago maydis to study the role of subunit g on mitochondrial metabolism and cristae architecture. Deletion of the ATP20 gene, encoding the g subunit, did not affect cell growth or glucose consumption, but biomass production was lower in the mutant strain (gΔ strain). Ultrastructure observations showed that mitochondrial size and cristae shape were similar in wild-type and gΔ strains. The mitochondrial membrane potential in both strains had a similar magnitude, but oxygen consumption was higher in the WT strain. ATP synthesis was 20 % lower in the gΔ strain. Additionally, the mutant strain expressed the alternative oxidase in the early stages of growth (exponential phase), probably as a response to ROS stress. Dimer from mutant strain was unstable to digitonin solubilization, avoiding its isolation and kinetic characterization. The isolated monomeric state activated by n-dodecyl-β-D-maltopyranoside showed similar kinetic constants to the monomer from the WT strain. A decrease in mitochondrial ATP synthesis and the presence of the AOX during the exponential growth phase suggests that deletion of the g gene induces ROS stress. |
---|---|
ISSN: | 1879-2650 |