Loading…

Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide

Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH) 2 /GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH) 2 /GO synthesized under optimized reaction conditions required...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2023-03, Vol.52 (12), p.3877-3883
Main Authors: Muthukumar, Pandi, Nantheeswaran, Periyappan, Mariappan, Mariappan, Pannipara, Mehboobali, Al-Sehemi, Abdullah G, Anthony, Savarimuthu Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523
cites cdi_FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523
container_end_page 3883
container_issue 12
container_start_page 3877
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 52
creator Muthukumar, Pandi
Nantheeswaran, Periyappan
Mariappan, Mariappan
Pannipara, Mehboobali
Al-Sehemi, Abdullah G
Anthony, Savarimuthu Philip
description Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH) 2 /GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH) 2 /GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm −2 (scan rate 1 mV s −1 ). In contrast, N,F-Co(OH) 2 without GO and Co(OH) 2 /GO without fluorine required higher overpotentials (370 (N,F-Co(OH) 2 ) and 325 mV (Co(OH) 2 /GO)) for producing the current density of 10 mA cm −2 . The low Tafel slope (52.6 mV dec −1 ) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH) 2 /GO compared to N,F-Co(OH) 2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH) 2 /GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH) 2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co 2+ /Co 3+ and the doping of nitrogen and fluorine in N,F-Co(OH) 2 /GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co 2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH) 2 electrocatalysts with enhanced OER activity under alkaline conditions. The integration of electronegative F into graphene oxide improves the charge-transfer kinetics and stability of the Co 2+ active center and showed enhanced OER activity.
doi_str_mv 10.1039/d2dt04169c
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_36876484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788729333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523</originalsourceid><addsrcrecordid>eNpdkctr3DAQh0VpaZJtL723CHIJBSd6WvaxbB4tBHJJzkbPtYJXciW5yUL--Hiz6QYylxmYj28GfgB8w-gUI9qeGWIKYrhu9QdwiJkQVUso-7ifSX0AjnK-R4gQxMlncEDrRtSsYYfg6SL0MmgfVrD0FsbHzcoGaP_FYSo-Bpis1C9DdFBHJYcC-41J8dEbC9UGOqmS17JsBUGGqON6jNkXm-GDLz10wxSTD7YycbQGrpIcexu2h2bBF_DJySHbr699Ae4uL26Xv6vrm6s_y1_XlaZUlIo1khrFaiqxFgI1LRYOtVq11HFJNOeK14Ix7BTBXGiFkVPCGMZNjRrOCV2Ak513TPHvZHPp1j5rOwwy2DjljoiGikbgGs3o8Tv0Pk4pzN9tqUaQls61AD93lE4x52RdNya_lmnTYdRtM-nOyfntSybLGf7xqpzU2po9-j-EGfi-A1LW--1bqPQZuGiSYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788729333</pqid></control><display><type>article</type><title>Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide</title><source>Royal Society of Chemistry</source><creator>Muthukumar, Pandi ; Nantheeswaran, Periyappan ; Mariappan, Mariappan ; Pannipara, Mehboobali ; Al-Sehemi, Abdullah G ; Anthony, Savarimuthu Philip</creator><creatorcontrib>Muthukumar, Pandi ; Nantheeswaran, Periyappan ; Mariappan, Mariappan ; Pannipara, Mehboobali ; Al-Sehemi, Abdullah G ; Anthony, Savarimuthu Philip</creatorcontrib><description>Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH) 2 /GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH) 2 /GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm −2 (scan rate 1 mV s −1 ). In contrast, N,F-Co(OH) 2 without GO and Co(OH) 2 /GO without fluorine required higher overpotentials (370 (N,F-Co(OH) 2 ) and 325 mV (Co(OH) 2 /GO)) for producing the current density of 10 mA cm −2 . The low Tafel slope (52.6 mV dec −1 ) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH) 2 /GO compared to N,F-Co(OH) 2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH) 2 /GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH) 2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co 2+ /Co 3+ and the doping of nitrogen and fluorine in N,F-Co(OH) 2 /GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co 2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH) 2 electrocatalysts with enhanced OER activity under alkaline conditions. The integration of electronegative F into graphene oxide improves the charge-transfer kinetics and stability of the Co 2+ active center and showed enhanced OER activity.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt04169c</identifier><identifier>PMID: 36876484</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysts ; Charge transfer ; Chemical synthesis ; Cobalt ; Current density ; Electrocatalysts ; Electronegativity ; Fluorine ; Graphene ; Interface stability ; Nanocomposites ; Nanoparticles ; Nitrogen ; Oxygen evolution reactions ; Photoelectrons ; Reaction kinetics ; X ray photoelectron spectroscopy</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-03, Vol.52 (12), p.3877-3883</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523</citedby><cites>FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523</cites><orcidid>0000-0002-9023-0920 ; 0000-0003-4714-2666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36876484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthukumar, Pandi</creatorcontrib><creatorcontrib>Nantheeswaran, Periyappan</creatorcontrib><creatorcontrib>Mariappan, Mariappan</creatorcontrib><creatorcontrib>Pannipara, Mehboobali</creatorcontrib><creatorcontrib>Al-Sehemi, Abdullah G</creatorcontrib><creatorcontrib>Anthony, Savarimuthu Philip</creatorcontrib><title>Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH) 2 /GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH) 2 /GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm −2 (scan rate 1 mV s −1 ). In contrast, N,F-Co(OH) 2 without GO and Co(OH) 2 /GO without fluorine required higher overpotentials (370 (N,F-Co(OH) 2 ) and 325 mV (Co(OH) 2 /GO)) for producing the current density of 10 mA cm −2 . The low Tafel slope (52.6 mV dec −1 ) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH) 2 /GO compared to N,F-Co(OH) 2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH) 2 /GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH) 2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co 2+ /Co 3+ and the doping of nitrogen and fluorine in N,F-Co(OH) 2 /GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co 2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH) 2 electrocatalysts with enhanced OER activity under alkaline conditions. The integration of electronegative F into graphene oxide improves the charge-transfer kinetics and stability of the Co 2+ active center and showed enhanced OER activity.</description><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Cobalt</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electronegativity</subject><subject>Fluorine</subject><subject>Graphene</subject><subject>Interface stability</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrons</subject><subject>Reaction kinetics</subject><subject>X ray photoelectron spectroscopy</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQh0VpaZJtL723CHIJBSd6WvaxbB4tBHJJzkbPtYJXciW5yUL--Hiz6QYylxmYj28GfgB8w-gUI9qeGWIKYrhu9QdwiJkQVUso-7ifSX0AjnK-R4gQxMlncEDrRtSsYYfg6SL0MmgfVrD0FsbHzcoGaP_FYSo-Bpis1C9DdFBHJYcC-41J8dEbC9UGOqmS17JsBUGGqON6jNkXm-GDLz10wxSTD7YycbQGrpIcexu2h2bBF_DJySHbr699Ae4uL26Xv6vrm6s_y1_XlaZUlIo1khrFaiqxFgI1LRYOtVq11HFJNOeK14Ix7BTBXGiFkVPCGMZNjRrOCV2Ak513TPHvZHPp1j5rOwwy2DjljoiGikbgGs3o8Tv0Pk4pzN9tqUaQls61AD93lE4x52RdNya_lmnTYdRtM-nOyfntSybLGf7xqpzU2po9-j-EGfi-A1LW--1bqPQZuGiSYg</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Muthukumar, Pandi</creator><creator>Nantheeswaran, Periyappan</creator><creator>Mariappan, Mariappan</creator><creator>Pannipara, Mehboobali</creator><creator>Al-Sehemi, Abdullah G</creator><creator>Anthony, Savarimuthu Philip</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9023-0920</orcidid><orcidid>https://orcid.org/0000-0003-4714-2666</orcidid></search><sort><creationdate>20230321</creationdate><title>Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide</title><author>Muthukumar, Pandi ; Nantheeswaran, Periyappan ; Mariappan, Mariappan ; Pannipara, Mehboobali ; Al-Sehemi, Abdullah G ; Anthony, Savarimuthu Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Cobalt</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electronegativity</topic><topic>Fluorine</topic><topic>Graphene</topic><topic>Interface stability</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrons</topic><topic>Reaction kinetics</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthukumar, Pandi</creatorcontrib><creatorcontrib>Nantheeswaran, Periyappan</creatorcontrib><creatorcontrib>Mariappan, Mariappan</creatorcontrib><creatorcontrib>Pannipara, Mehboobali</creatorcontrib><creatorcontrib>Al-Sehemi, Abdullah G</creatorcontrib><creatorcontrib>Anthony, Savarimuthu Philip</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthukumar, Pandi</au><au>Nantheeswaran, Periyappan</au><au>Mariappan, Mariappan</au><au>Pannipara, Mehboobali</au><au>Al-Sehemi, Abdullah G</au><au>Anthony, Savarimuthu Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>52</volume><issue>12</issue><spage>3877</spage><epage>3883</epage><pages>3877-3883</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH) 2 /GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH) 2 /GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm −2 (scan rate 1 mV s −1 ). In contrast, N,F-Co(OH) 2 without GO and Co(OH) 2 /GO without fluorine required higher overpotentials (370 (N,F-Co(OH) 2 ) and 325 mV (Co(OH) 2 /GO)) for producing the current density of 10 mA cm −2 . The low Tafel slope (52.6 mV dec −1 ) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH) 2 /GO compared to N,F-Co(OH) 2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH) 2 /GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH) 2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co 2+ /Co 3+ and the doping of nitrogen and fluorine in N,F-Co(OH) 2 /GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co 2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH) 2 electrocatalysts with enhanced OER activity under alkaline conditions. The integration of electronegative F into graphene oxide improves the charge-transfer kinetics and stability of the Co 2+ active center and showed enhanced OER activity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36876484</pmid><doi>10.1039/d2dt04169c</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9023-0920</orcidid><orcidid>https://orcid.org/0000-0003-4714-2666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2023-03, Vol.52 (12), p.3877-3883
issn 1477-9226
1477-9234
language eng
recordid cdi_pubmed_primary_36876484
source Royal Society of Chemistry
subjects Catalysts
Charge transfer
Chemical synthesis
Cobalt
Current density
Electrocatalysts
Electronegativity
Fluorine
Graphene
Interface stability
Nanocomposites
Nanoparticles
Nitrogen
Oxygen evolution reactions
Photoelectrons
Reaction kinetics
X ray photoelectron spectroscopy
title Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20oxygen%20evolution%20reaction%20of%20cobalt%20hydroxide%20by%20fabricating%20nanocomposites%20with%20fluorine-doped%20graphene%20oxide&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Muthukumar,%20Pandi&rft.date=2023-03-21&rft.volume=52&rft.issue=12&rft.spage=3877&rft.epage=3883&rft.pages=3877-3883&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt04169c&rft_dat=%3Cproquest_pubme%3E2788729333%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-48a3db463a1c7708917f09cb93f5a2c55b567441fb2157cb10fb7dd45d6085523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788729333&rft_id=info:pmid/36876484&rfr_iscdi=true