Loading…

Real-Time Gait Phase Detection on Wearable Devices for Real-World Free-Living Gait

Detecting gait phases with wearables unobtrusively and reliably in real-time is important for clinical gait rehabilitation and early diagnosis of neurological diseases. Due to hardware limitations of microcontrollers in wearable devices (e.g., memory and computation power), reliable real-time gait p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2023-03, Vol.27 (3), p.1295-1306
Main Authors: Wu, Jiaen, Becsek, Barna, Schaer, Alessandro, Maurenbrecher, Henrik, Chatzipirpiridis, George, Ergeneman, Olgac, Pane, Salvador, Torun, Hamdi, Nelson, Bradley J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting gait phases with wearables unobtrusively and reliably in real-time is important for clinical gait rehabilitation and early diagnosis of neurological diseases. Due to hardware limitations of microcontrollers in wearable devices (e.g., memory and computation power), reliable real-time gait phase detection on the microcontrollers remains a challenge, especially for long-term real-world free-living gait. In this work, a novel algorithm based on a reduced support vector machine (RSVM) and a finite state machine (FSM) is developed to address this. The RSVM is developed by exploiting the cascaded K-means clustering to reduce the model size and computation time of a standard SVM by 88% and a factor of 36, with only minor degradation in gait phase prediction accuracy of around 4%. For each gait phase prediction from the RSVM, the FSM is designed to validate the prediction and correct misclassifications. The developed algorithm is implemented on a microcontroller of a wearable device and its real-time (on the fly) classification performance is evaluated by twenty healthy subjects walking along a predefined real-world route with uncontrolled free-living gait. It shows a promising real-time performance with an accuracy of 91.51%, a sensitivity of 91.70%, and a specificity of 95.77%. The algorithm also demonstrates its robustness with varying walking conditions.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2022.3228329