Loading…

RelTR: Relation Transformer for Scene Graph Generation

Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this paper, we propose an e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-09, Vol.45 (9), p.1-16
Main Authors: Cong, Yuren, Yang, Michael Ying, Rosenhahn, Bodo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this paper, we propose an end-to-end scene graph generation model Relation Transformer (RelTR), which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts sparse scene graphs directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome, Open Images V6, and VRD datasets demonstrate the superior performance and fast inference of our model.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2023.3268066