Loading…
Source-Free Domain Adaptation (SFDA) for Privacy-Preserving Seizure Subtype Classification
Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, whi...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2023, Vol.31, p.2315-2325 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroencephalogram (EEG) based seizure subtype classification is very important in clinical diagnostics. Source-free domain adaptation (SFDA) uses a pre-trained source model, instead of the source data, for privacy-preserving transfer learning. SFDA is useful in seizure subtype classification, which can protect the privacy of the source patients, while reducing the amount of labeled calibration data for a new patient. This paper introduces semi-supervised transfer boosting (SS-TrBoosting), a boosting-based SFDA approach for seizure subtype classification. We further extend it to unsupervised transfer boosting (U-TrBoosting) for unsupervised SFDA, i.e., the new patient does not need any labeled EEG data. Experiments on three public seizure datasets demonstrated that SS-TrBoosting and U-TrBoosting outperformed multiple classical and state-of-the-art machine learning approaches in cross-dataset/cross-patient seizure subtype classification. |
---|---|
ISSN: | 1534-4320 1558-0210 |
DOI: | 10.1109/TNSRE.2023.3274563 |