Loading…
Biocompatible and bioactive hydrogels of recombinant fusion elastin with low transition temperature for improved healing of UV-irradiated skin
Prolonged exposure to UV radiation can cause severe photodamage to the skin, leading to abnormal fragmentation of elastin fibers. As one of the main protein components of the dermal extracellular matrix, elastin plays a critical role in the mechanical behavior and physiological function of the skin....
Saved in:
Published in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-07, Vol.11 (29), p.6975-6982 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prolonged exposure to UV radiation can cause severe photodamage to the skin, leading to abnormal fragmentation of elastin fibers. As one of the main protein components of the dermal extracellular matrix, elastin plays a critical role in the mechanical behavior and physiological function of the skin. Animal-derived elastin has attracted extensive attention in tissue engineering, however it suffers from severe drawbacks such as a risk of virus transmission, ready degradation, and challenging quality control. Herein, we have for the first time developed a novel recombinant fusion elastin (RFE) and its cross-linked hydrogel for improved healing efficacy for UV-irradiated skin. RFE showed temperature-sensitive aggregation behavior similar to natural elastin. Compared with recombinant elastin without the fusion V-foldon domain, RFE showed a much more ordered secondary structure and lower transition temperature. Furthermore, Native-PAGE results indicated that the addition of the V-foldon domain triggered the formation of remarkable oligomers in RFE, which may result in a more ordered conformation. Tetrakis Hydroxymethyl Phosphonium Chloride (THPC) cross-linking of RFE led to the production of a fibrous hydrogel with uniform three-dimensional porous nanostructures and excellent mechanical strength. The RFE hydrogel showed superior cellular activity, significantly promoting the survival and proliferation of human foreskin fibroblast-1 (HFF-1). Studies of mice models of UV-irradiated skin demonstrated that the RFE hydrogel pronouncedly accelerated their healing process by inhibiting epidermal hyperplasia as well as boosting the regeneration of collagen and elastin fibers. The highly biocompatible and bioactive recombinant fusion elastin and its cross-linked hydrogel provide a potent treatment for photodamaged skin, which may have promising applications in dermatology and tissue engineering.
Prolonged exposure to UV radiation can cause severe photodamage to the skin, leading to abnormal fragmentation of elastin fibers. |
---|---|
ISSN: | 2050-750X 2050-7518 |
DOI: | 10.1039/d3tb00564j |