Loading…

Dual-Channel Prototype Network for Few-Shot Pathology Image Classification

In the field of pathology, the scarcity of certain diseases and the difficulty of annotating images hinder the development of large, high-quality datasets, which in turn affects the advancement of deep learning-assisted diagnostics. Few-shot learning has demonstrated unique advantages in modeling ta...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2024-07, Vol.28 (7), p.4132-4144
Main Authors: Quan, Hao, Li, Xinjia, Hu, Dayu, Nan, Tianhang, Cui, Xiaoyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the field of pathology, the scarcity of certain diseases and the difficulty of annotating images hinder the development of large, high-quality datasets, which in turn affects the advancement of deep learning-assisted diagnostics. Few-shot learning has demonstrated unique advantages in modeling tasks with limited data, yet explorations of this method in the field of pathology remain in the early stages. To address this issue, we present a dual-channel prototype network (DCPN), a novel few-shot learning approach for efficiently classifying pathology images with limited data. The DCPN leverages self-supervised learning to extend the pyramid vision transformer (PVT) to few-shot classification tasks and combines it with a convolutional neural network to construct a dual-channel network for extracting multi-scale, high-precision pathological features, thereby substantially enhancing the generalizability of prototype representations. Additionally, we design a soft voting classifier based on multi-scale features to further augment the discriminative power of the model in complex pathology image classification tasks. We constructed three few-shot classification tasks with varying degrees of domain shift using three publicly available pathological datasets-CRCTP, NCTCRC, and LC25000-to emulate real-world clinical scenarios. The results demonstrated that the DCPN outperformed the prototypical network across all metrics, achieving the highest accuracies in same-domain tasks-70.86% for 1-shot, 82.57% for 5-shot, and 85.2% for 10-shot setups-corresponding to improvements of 5.51%, 5.72%, and 6.81%, respectively, over the prototypical network. Notably, in the same-domain 10-shot setting, the accuracy of the DCPN (85.2%) surpassed that of the PVT-based supervised learning model (85.15%), confirming its potential to diagnose rare diseases within few-shot learning frameworks.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3386197