Loading…
NiO/AgNPs nanowell enhanced SERS sensor for efficient detection of micro/nanoplastics in beverages
The ubiquity of plastic products has led to an increased exposure to micro and nano plastics across diverse environments, presenting a novel class of pollutants with substantial health implications. Emerging research indicates their capacity to infiltrate human organs, posing risks of tissue damage...
Saved in:
Published in: | Talanta (Oxford) 2024-09, Vol.281, p.126877 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ubiquity of plastic products has led to an increased exposure to micro and nano plastics across diverse environments, presenting a novel class of pollutants with substantial health implications. Emerging research indicates their capacity to infiltrate human organs, posing risks of tissue damage and carcinogenesis. Given the prevalent consumption of beverages as a primary vector for these plastics' entry into the human system, there is an imperative need for the advancement of precise detection methodologies in liquids. In this study, we introduce a substrate comprising a Nickel Oxide (NiO) nanosheet array decorated with Silver Nanoparticles (AgNPs) for the Surface-Enhanced Raman Spectroscopy (SERS) analysis of micro//nano plastics. This configuration, leveraging a unique nanowell architecture alongside silver plasmonic enhancement, demonstrates unparalleled sensitivity and repeatability in signal, facilitating the accurate quantification of these contaminants. Through the application of a portable Raman apparatus, this study successfully identifies prevalent micro/nano plastics including polystyrene (PS), polyethylene (PE), and polypropylene (PP), achieving detection sensitivities of 5 μg/mL, 25 μg/mL, and 25 μg/mL, respectively. Moreover, the substrate's efficacy extends to the detection of PS within commonly consumed beverages such as water, milk, and liquor with sensitivities of 25 μg/mL, 50 μg/mL, and 50 μg/mL, respectively. These findings highlight the substrate's potential as an expedient and effective sensor for the real-time monitoring of micro/nano plastic pollutants. |
---|---|
ISSN: | 1873-3573 |