Loading…

In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fiss...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2024-12
Main Authors: Hartley, Will C, Kasten, Kevin, Greenhalgh, Mark D, Feoktistova, Taisiia, Wise, Henry R, Laddusaw, Jacqueline M, Frost, Aileen B, Ng, Sean, Slawin, Alexandra M Z, Bode, Bela E, Cheong, Paul Ha-Yeon, Smith, Andrew D
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event. Herein, a Lewis basic chiral isothiourea facilitates catalytic [1,2]-rearrangement of prochiral aryl ester ammonium salts to generate unnatural α-amino acid derivatives with up to complete selectivity over the [2,3]-rearrangement and with good to excellent enantiocontrol. Key factors in favoring the [1,2]-rearrangement include exploitation of disubstituted terminal allylic substituents, cyclic N-substituted ammonium salts, and elevated reaction temperatures. Mechanistic studies involving C-labeling and crossover reactions, combined with radical trapping experiments and observed changes in product enantioselectivity, are consistent with a radical solvent cage effect, with maximum product enantioselectivity observed through promotion of "in-cage" radical-radical recombination. Computational analysis indicates that the distribution between [1,2]- and [2,3]-rearrangement products arises predominantly from C-N bond homolysis of an intermediate ammonium ylide, followed by recombination of the α-amino radical at either the primary or tertiary site of an intermediate allylic radical. Electrostatic interactions involving the bromide counterion control the facial selectivity of the [1,2]- and [2,3]-rearrangements, while the sterically hindered tertiary position of the allylic substituent disfavors the formation of the [2,3]-product. These results will impact further investigations and understanding of enantioselective radical-radical reactions.
ISSN:1520-5126