Loading…
In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides
The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fiss...
Saved in:
Published in: | Journal of the American Chemical Society 2024-12 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of the American Chemical Society |
container_volume | |
creator | Hartley, Will C Kasten, Kevin Greenhalgh, Mark D Feoktistova, Taisiia Wise, Henry R Laddusaw, Jacqueline M Frost, Aileen B Ng, Sean Slawin, Alexandra M Z Bode, Bela E Cheong, Paul Ha-Yeon Smith, Andrew D |
description | The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event. Herein, a Lewis basic chiral isothiourea facilitates catalytic [1,2]-rearrangement of prochiral aryl ester ammonium salts to generate unnatural α-amino acid derivatives with up to complete selectivity over the [2,3]-rearrangement and with good to excellent enantiocontrol. Key factors in favoring the [1,2]-rearrangement include exploitation of disubstituted terminal allylic substituents, cyclic N-substituted ammonium salts, and elevated reaction temperatures. Mechanistic studies involving
C-labeling and crossover reactions, combined with radical trapping experiments and observed changes in product enantioselectivity, are consistent with a radical solvent cage effect, with maximum product enantioselectivity observed through promotion of "in-cage" radical-radical recombination. Computational analysis indicates that the distribution between [1,2]- and [2,3]-rearrangement products arises predominantly from C-N bond homolysis of an intermediate ammonium ylide, followed by recombination of the α-amino radical at either the primary or tertiary site of an intermediate allylic radical. Electrostatic interactions involving the bromide counterion control the facial selectivity of the [1,2]- and [2,3]-rearrangements, while the sterically hindered tertiary position of the allylic substituent disfavors the formation of the [2,3]-product. These results will impact further investigations and understanding of enantioselective radical-radical reactions. |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39715456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39715456</sourcerecordid><originalsourceid>FETCH-pubmed_primary_397154563</originalsourceid><addsrcrecordid>eNqFjsFqwkAQQBeh1LT2F2Q-wEA2GluPIgn1VJBeShEZ1zGdsjsruxshf28O9dzTO7x3eCOV6aos8kqXy7F6ivG3KIpF-aYf1Xi-etXVolpmqttKvsGWYEfGuyMLJvYCDRq2nDBRhPRDUAvKICJZMomvBB-hRfEGE9o-sYFvPSv3-Y4wBJSWHEkCf4a1tb0d9No5L9w5-LJ8ojhRD2e0kV7--KymTf25ec8v3dHR6XAJ7DD0h_vn_N_gBlhFSfs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hartley, Will C ; Kasten, Kevin ; Greenhalgh, Mark D ; Feoktistova, Taisiia ; Wise, Henry R ; Laddusaw, Jacqueline M ; Frost, Aileen B ; Ng, Sean ; Slawin, Alexandra M Z ; Bode, Bela E ; Cheong, Paul Ha-Yeon ; Smith, Andrew D</creator><creatorcontrib>Hartley, Will C ; Kasten, Kevin ; Greenhalgh, Mark D ; Feoktistova, Taisiia ; Wise, Henry R ; Laddusaw, Jacqueline M ; Frost, Aileen B ; Ng, Sean ; Slawin, Alexandra M Z ; Bode, Bela E ; Cheong, Paul Ha-Yeon ; Smith, Andrew D</creatorcontrib><description>The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event. Herein, a Lewis basic chiral isothiourea facilitates catalytic [1,2]-rearrangement of prochiral aryl ester ammonium salts to generate unnatural α-amino acid derivatives with up to complete selectivity over the [2,3]-rearrangement and with good to excellent enantiocontrol. Key factors in favoring the [1,2]-rearrangement include exploitation of disubstituted terminal allylic substituents, cyclic N-substituted ammonium salts, and elevated reaction temperatures. Mechanistic studies involving
C-labeling and crossover reactions, combined with radical trapping experiments and observed changes in product enantioselectivity, are consistent with a radical solvent cage effect, with maximum product enantioselectivity observed through promotion of "in-cage" radical-radical recombination. Computational analysis indicates that the distribution between [1,2]- and [2,3]-rearrangement products arises predominantly from C-N bond homolysis of an intermediate ammonium ylide, followed by recombination of the α-amino radical at either the primary or tertiary site of an intermediate allylic radical. Electrostatic interactions involving the bromide counterion control the facial selectivity of the [1,2]- and [2,3]-rearrangements, while the sterically hindered tertiary position of the allylic substituent disfavors the formation of the [2,3]-product. These results will impact further investigations and understanding of enantioselective radical-radical reactions.</description><identifier>EISSN: 1520-5126</identifier><identifier>PMID: 39715456</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Chemical Society, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9527-6418 ; 0000-0002-2104-7313 ; 0000-0002-4789-7746 ; 0000-0003-1298-8784 ; 0000-0002-4176-7633 ; 0000-0001-7811-6968 ; 0000-0002-3384-271X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartley, Will C</creatorcontrib><creatorcontrib>Kasten, Kevin</creatorcontrib><creatorcontrib>Greenhalgh, Mark D</creatorcontrib><creatorcontrib>Feoktistova, Taisiia</creatorcontrib><creatorcontrib>Wise, Henry R</creatorcontrib><creatorcontrib>Laddusaw, Jacqueline M</creatorcontrib><creatorcontrib>Frost, Aileen B</creatorcontrib><creatorcontrib>Ng, Sean</creatorcontrib><creatorcontrib>Slawin, Alexandra M Z</creatorcontrib><creatorcontrib>Bode, Bela E</creatorcontrib><creatorcontrib>Cheong, Paul Ha-Yeon</creatorcontrib><creatorcontrib>Smith, Andrew D</creatorcontrib><title>In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event. Herein, a Lewis basic chiral isothiourea facilitates catalytic [1,2]-rearrangement of prochiral aryl ester ammonium salts to generate unnatural α-amino acid derivatives with up to complete selectivity over the [2,3]-rearrangement and with good to excellent enantiocontrol. Key factors in favoring the [1,2]-rearrangement include exploitation of disubstituted terminal allylic substituents, cyclic N-substituted ammonium salts, and elevated reaction temperatures. Mechanistic studies involving
C-labeling and crossover reactions, combined with radical trapping experiments and observed changes in product enantioselectivity, are consistent with a radical solvent cage effect, with maximum product enantioselectivity observed through promotion of "in-cage" radical-radical recombination. Computational analysis indicates that the distribution between [1,2]- and [2,3]-rearrangement products arises predominantly from C-N bond homolysis of an intermediate ammonium ylide, followed by recombination of the α-amino radical at either the primary or tertiary site of an intermediate allylic radical. Electrostatic interactions involving the bromide counterion control the facial selectivity of the [1,2]- and [2,3]-rearrangements, while the sterically hindered tertiary position of the allylic substituent disfavors the formation of the [2,3]-product. These results will impact further investigations and understanding of enantioselective radical-radical reactions.</description><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjsFqwkAQQBeh1LT2F2Q-wEA2GluPIgn1VJBeShEZ1zGdsjsruxshf28O9dzTO7x3eCOV6aos8kqXy7F6ivG3KIpF-aYf1Xi-etXVolpmqttKvsGWYEfGuyMLJvYCDRq2nDBRhPRDUAvKICJZMomvBB-hRfEGE9o-sYFvPSv3-Y4wBJSWHEkCf4a1tb0d9No5L9w5-LJ8ojhRD2e0kV7--KymTf25ec8v3dHR6XAJ7DD0h_vn_N_gBlhFSfs</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Hartley, Will C</creator><creator>Kasten, Kevin</creator><creator>Greenhalgh, Mark D</creator><creator>Feoktistova, Taisiia</creator><creator>Wise, Henry R</creator><creator>Laddusaw, Jacqueline M</creator><creator>Frost, Aileen B</creator><creator>Ng, Sean</creator><creator>Slawin, Alexandra M Z</creator><creator>Bode, Bela E</creator><creator>Cheong, Paul Ha-Yeon</creator><creator>Smith, Andrew D</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-9527-6418</orcidid><orcidid>https://orcid.org/0000-0002-2104-7313</orcidid><orcidid>https://orcid.org/0000-0002-4789-7746</orcidid><orcidid>https://orcid.org/0000-0003-1298-8784</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid><orcidid>https://orcid.org/0000-0001-7811-6968</orcidid><orcidid>https://orcid.org/0000-0002-3384-271X</orcidid></search><sort><creationdate>20241223</creationdate><title>In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides</title><author>Hartley, Will C ; Kasten, Kevin ; Greenhalgh, Mark D ; Feoktistova, Taisiia ; Wise, Henry R ; Laddusaw, Jacqueline M ; Frost, Aileen B ; Ng, Sean ; Slawin, Alexandra M Z ; Bode, Bela E ; Cheong, Paul Ha-Yeon ; Smith, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_397154563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartley, Will C</creatorcontrib><creatorcontrib>Kasten, Kevin</creatorcontrib><creatorcontrib>Greenhalgh, Mark D</creatorcontrib><creatorcontrib>Feoktistova, Taisiia</creatorcontrib><creatorcontrib>Wise, Henry R</creatorcontrib><creatorcontrib>Laddusaw, Jacqueline M</creatorcontrib><creatorcontrib>Frost, Aileen B</creatorcontrib><creatorcontrib>Ng, Sean</creatorcontrib><creatorcontrib>Slawin, Alexandra M Z</creatorcontrib><creatorcontrib>Bode, Bela E</creatorcontrib><creatorcontrib>Cheong, Paul Ha-Yeon</creatorcontrib><creatorcontrib>Smith, Andrew D</creatorcontrib><collection>PubMed</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartley, Will C</au><au>Kasten, Kevin</au><au>Greenhalgh, Mark D</au><au>Feoktistova, Taisiia</au><au>Wise, Henry R</au><au>Laddusaw, Jacqueline M</au><au>Frost, Aileen B</au><au>Ng, Sean</au><au>Slawin, Alexandra M Z</au><au>Bode, Bela E</au><au>Cheong, Paul Ha-Yeon</au><au>Smith, Andrew D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2024-12-23</date><risdate>2024</risdate><eissn>1520-5126</eissn><abstract>The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event. Herein, a Lewis basic chiral isothiourea facilitates catalytic [1,2]-rearrangement of prochiral aryl ester ammonium salts to generate unnatural α-amino acid derivatives with up to complete selectivity over the [2,3]-rearrangement and with good to excellent enantiocontrol. Key factors in favoring the [1,2]-rearrangement include exploitation of disubstituted terminal allylic substituents, cyclic N-substituted ammonium salts, and elevated reaction temperatures. Mechanistic studies involving
C-labeling and crossover reactions, combined with radical trapping experiments and observed changes in product enantioselectivity, are consistent with a radical solvent cage effect, with maximum product enantioselectivity observed through promotion of "in-cage" radical-radical recombination. Computational analysis indicates that the distribution between [1,2]- and [2,3]-rearrangement products arises predominantly from C-N bond homolysis of an intermediate ammonium ylide, followed by recombination of the α-amino radical at either the primary or tertiary site of an intermediate allylic radical. Electrostatic interactions involving the bromide counterion control the facial selectivity of the [1,2]- and [2,3]-rearrangements, while the sterically hindered tertiary position of the allylic substituent disfavors the formation of the [2,3]-product. These results will impact further investigations and understanding of enantioselective radical-radical reactions.</abstract><cop>United States</cop><pmid>39715456</pmid><orcidid>https://orcid.org/0000-0002-9527-6418</orcidid><orcidid>https://orcid.org/0000-0002-2104-7313</orcidid><orcidid>https://orcid.org/0000-0002-4789-7746</orcidid><orcidid>https://orcid.org/0000-0003-1298-8784</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid><orcidid>https://orcid.org/0000-0001-7811-6968</orcidid><orcidid>https://orcid.org/0000-0002-3384-271X</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1520-5126 |
ispartof | Journal of the American Chemical Society, 2024-12 |
issn | 1520-5126 |
language | eng |
recordid | cdi_pubmed_primary_39715456 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | In-Cage Recombination Facilitates the Enantioselective Organocatalytic [1,2]-Rearrangement of Allylic Ammonium Ylides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Cage%20Recombination%20Facilitates%20the%20Enantioselective%20Organocatalytic%20%5B1,2%5D-Rearrangement%20of%20Allylic%20Ammonium%20Ylides&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hartley,%20Will%20C&rft.date=2024-12-23&rft.eissn=1520-5126&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39715456%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_397154563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39715456&rfr_iscdi=true |