Loading…
Antiviral drugs block replication of highly immune-evasive Omicron subvariants ex vivo, but fail to reduce tissue inflammation
The identification of the SARS-CoV-2 Omicron variants BA.4/BA.5, BF.7 and BQ.1.1 immediately raised concerns regarding the efficacy of currently used monoclonal antibody therapies. Here we examined the activity of monoclonal antibody therapies and antiviral drugs against clinical specimens for SARS-...
Saved in:
Published in: | Antiviral research 2023-05, Vol.213, p.105581-105581, Article 105581 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The identification of the SARS-CoV-2 Omicron variants BA.4/BA.5, BF.7 and BQ.1.1 immediately raised concerns regarding the efficacy of currently used monoclonal antibody therapies. Here we examined the activity of monoclonal antibody therapies and antiviral drugs against clinical specimens for SARS-CoV-2 Omicron BA.4/BA.5, BF.7 and BQ.1.1 employing an immunofluorescence neutralization assay. Further we explored treatment of BA.4/BA.5 infections with efficient antiviral drugs and monoclonal antibodies in a 3D model of primary human bronchial epithelial cells. We found that the antiviral drugs Molnupiravir, Nirmatrelvir and Remdesivir efficiently inhibit BA.4/BA.5, BF.7 and BQ.1.1 replication. In contrast, only the monoclonal antibody Cilgavimab exerted an inhibitory effect, while Tixagevimab, Regdanvimab and Sotrovimab lost their efficacy against BA.4/BA.5. We found that only the prophylactic treatment with Cilgavimab impacted on tissue inflammation by reducing intracellular complement component 3 (C3) activation following BA.4/BA.5 infection in primary human airway epithelial grown in air-liquid-interphase, which was not the case when using antiviral drugs or Cilgavimab after establishment of infection. Of note, all tested monoclonal antibodies had no neutralizing activity during infection by BF.7 and BQ.1.1 variants. Our results suggest that despite a marked reduction of viral replication, potent antiviral drugs fail to reduce tissue levels of inflammatory compounds such as C3, which can still result in tissue destruction.
•Antiviral and neutralizing capacity of COVID-19 drugs analyzed in a 3D airway model.•Antiviral drugs are effective against BA.4/BA.5, BF.7 and BQ.1.1•Prophylactic use of Cilgavimab reduced innate immune activation within the 3D model.•Antiviral drugs could not reduce intracellular complement component 3. |
---|---|
ISSN: | 0166-3542 1872-9096 |
DOI: | 10.1016/j.antiviral.2023.105581 |