Loading…

Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis

Overfitting may affect the accuracy of predicting future data because of weakened generalization. In this research, we used an electronic health records (EHR) dataset concerning breast cancer metastasis to study the overfitting of deep feedforward neural networks (FNNs) prediction models. We studied...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2023-03, Vol.15 (7), p.1969
Main Authors: Xu, Chuhan, Coen-Pirani, Pablo, Jiang, Xia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overfitting may affect the accuracy of predicting future data because of weakened generalization. In this research, we used an electronic health records (EHR) dataset concerning breast cancer metastasis to study the overfitting of deep feedforward neural networks (FNNs) prediction models. We studied how each hyperparameter and some of the interesting pairs of hyperparameters were interacting to influence the model performance and overfitting. The 11 hyperparameters we studied were activate function, weight initializer, number of hidden layers, learning rate, momentum, decay, dropout rate, batch size, epochs, L1, and L2. Our results show that most of the single hyperparameters are either negatively or positively corrected with model prediction performance and overfitting. In particular, we found that overfitting overall tends to negatively correlate with learning rate, decay, batch size, and L2, but tends to positively correlate with momentum, epochs, and L1. According to our results, learning rate, decay, and batch size may have a more significant impact on both overfitting and prediction performance than most of the other hyperparameters, including L1, L2, and dropout rate, which were designed for minimizing overfitting. We also find some interesting interacting pairs of hyperparameters such as learning rate and momentum, learning rate and decay, and batch size and epochs.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers15071969