Loading…
Prediction of the COVID-19 transmission: a case study of Pakistan
The world has suffered a lot from COVID-19 and is still on the verge of a new outbreak. The infected regions of coronavirus have been classified into four categories: SIRD model, (1) suspected, (2) infected, (3) recovered, and (4) deaths, where the COVID-19 transmission is evaluated using a stochast...
Saved in:
Published in: | Epidemiology and infection 2023-05, Vol.151, p.e89-e89, Article e89 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The world has suffered a lot from COVID-19 and is still on the verge of a new outbreak. The infected regions of coronavirus have been classified into four categories: SIRD model, (1) suspected, (2) infected, (3) recovered, and (4) deaths, where the COVID-19 transmission is evaluated using a stochastic model. A study in Pakistan modeled COVID-19 data using stochastic models like PRM and NBR. The findings were evaluated based on these models, as the country faces its third wave of the virus. Our study predicts COVID-19 casualties in Pakistan using a count data model. We’ve used a Poisson process, SIRD-type framework, and a stochastic model to find the solution. We took data from NCOC (National Command and Operation Center) website to choose the best prediction model based on all provinces of Pakistan, On the values of log L and AIC criteria. The best model among PRM and NBR is NBR because when over-dispersion happens; NBR is the best model for modelling the total suspected, infected, and recovered COVID-19 occurrences in Pakistan as it has the maximum log L and smallest AIC of the other count regression model. It was also observed that the active and critical cases positively and significantly affect COVID-19-related deaths in Pakistan using the NBR model. |
---|---|
ISSN: | 0950-2688 1469-4409 |
DOI: | 10.1017/S0950268823000730 |