Loading…

Energy homeostasis from Lavoisier to control theory

The intellectual history of energy homeostasis, focusing on food intake and energy storage, is briefly reviewed. Physiological energetics was founded by Lavoisier, who in the late eighteenth century invented direct and indirect calorimetry and discovered the role of oxygen in combustion and respirat...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2023-09, Vol.378 (1885), p.20220201
Main Author: Geary, Nori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intellectual history of energy homeostasis, focusing on food intake and energy storage, is briefly reviewed. Physiological energetics was founded by Lavoisier, who in the late eighteenth century invented direct and indirect calorimetry and discovered the role of oxygen in combustion and respiration. Energy was understood well enough by the mid-nineteenth century to realize the physiological energy-balance equation, that energy intake - energy expenditure = energy storage, but this did not greatly influence physiological research for another century. Homeostasis, the concept that many vital physiological variables are actively regulated in narrow envelopes, was developed by Bernard and Cannon between approximately 1870-1940 and remains a central principle of physiology. Kennedy coined the term lipostasis in 1953 to refer to the constancy of fat mass, which Mayer argued was the mechanism regulating body weight. A parameterized control-theory model suggests that a proportional negative-feedback control system incompletely compensates weight loss during persistent negative energy balance, suggesting that Cannon's idea of constancy within a narrow envelope may not fit body-weight regulation well. This modelling encourages further application of control theory to issues in energy homeostasis, including to the development of obesity. It also sets the stage for understanding the underlying neuroendocrine mechanisms. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
ISSN:0962-8436
1471-2970
1471-2970
DOI:10.1098/rstb.2022.0201