Loading…
A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony
Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lun...
Saved in:
Published in: | Biomedical signal processing and control 2023-09, Vol.86 (Pt C), p.105251, Article 105251 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3 |
container_end_page | |
container_issue | Pt C |
container_start_page | 105251 |
container_title | Biomedical signal processing and control |
container_volume | 86 |
creator | Obeso, Ishmael Yoon, Benjamin Ledbetter, David Aczon, Melissa Laksana, Eugene Zhou, Alice Eckberg, R. Andrew Mertan, Keith Khemani, Robinder G. Wetzel, Randall |
description | Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions.
[Display omitted] |
doi_str_mv | 10.1016/j.bspc.2023.105251 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10426752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809423006845</els_id><sourcerecordid>2852629906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaEl33-gh6JjL3YlrbQfUCghtE0h0Et7FmNp1pbZlbbS2sH_vmOchPbSi0aM3nszeo-xd1IspZD1x-1yVSa3VEJV1DDKyDN2KRtdL1op2jcvd9HpC3ZVylYI3TZSn7OLqjFt0yl9yfwdj2mPA4dpGoKDOaTIU8_LhG7OaZ1hLPwpzBs-gtuEiHxAyDHENXcQuceZcHwiHsaZ7-kIA8wpc38o5RDdJqd4uGFvexgK3j7Xa_br65ef9w-Lxx_fvt_fPS6cNvW8WGkH2DVNLyR4gNpXfdfWQqFB3fa6oh92vqGiamX6yqCR4IRXWrm-bqhzzT6fdKfdakTvaJsMg51yGCEfbIJg_32JYWPXaW-l0IoUFCl8eFbI6fcOy2zHUBwOA0RMu2JVa2h414maoOoEdTmVkrF_nSOFPeZjt_aYjz3mY0_5EOn93xu-Ul4CIcCnEwDJp33AbIsjax36kMlp61P4n_4f33ikWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852629906</pqid></control><display><type>article</type><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><source>ScienceDirect Freedom Collection</source><creator>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</creator><creatorcontrib>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</creatorcontrib><description>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions.
[Display omitted]</description><identifier>ISSN: 1746-8094</identifier><identifier>EISSN: 1746-8108</identifier><identifier>DOI: 10.1016/j.bspc.2023.105251</identifier><identifier>PMID: 37587924</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Convolutional Neural Network ; Double cycling ; Dyssynchrony ; Inadequate Support ; Mechanical ventilation ; Reverse Trigger ; Spectrogram</subject><ispartof>Biomedical signal processing and control, 2023-09, Vol.86 (Pt C), p.105251, Article 105251</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</citedby><cites>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</cites><orcidid>0000-0002-3950-5976 ; 0000-0002-1984-9210 ; 0000-0003-3922-4733 ; 0000-0003-0469-5551 ; 0000-0002-5815-0314 ; 0000-0001-9929-435X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37587924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obeso, Ishmael</creatorcontrib><creatorcontrib>Yoon, Benjamin</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Laksana, Eugene</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Eckberg, R. Andrew</creatorcontrib><creatorcontrib>Mertan, Keith</creatorcontrib><creatorcontrib>Khemani, Robinder G.</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><title>Biomedical signal processing and control</title><addtitle>Biomed Signal Process Control</addtitle><description>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions.
[Display omitted]</description><subject>Convolutional Neural Network</subject><subject>Double cycling</subject><subject>Dyssynchrony</subject><subject>Inadequate Support</subject><subject>Mechanical ventilation</subject><subject>Reverse Trigger</subject><subject>Spectrogram</subject><issn>1746-8094</issn><issn>1746-8108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rGzEQFaEl33-gh6JjL3YlrbQfUCghtE0h0Et7FmNp1pbZlbbS2sH_vmOchPbSi0aM3nszeo-xd1IspZD1x-1yVSa3VEJV1DDKyDN2KRtdL1op2jcvd9HpC3ZVylYI3TZSn7OLqjFt0yl9yfwdj2mPA4dpGoKDOaTIU8_LhG7OaZ1hLPwpzBs-gtuEiHxAyDHENXcQuceZcHwiHsaZ7-kIA8wpc38o5RDdJqd4uGFvexgK3j7Xa_br65ef9w-Lxx_fvt_fPS6cNvW8WGkH2DVNLyR4gNpXfdfWQqFB3fa6oh92vqGiamX6yqCR4IRXWrm-bqhzzT6fdKfdakTvaJsMg51yGCEfbIJg_32JYWPXaW-l0IoUFCl8eFbI6fcOy2zHUBwOA0RMu2JVa2h414maoOoEdTmVkrF_nSOFPeZjt_aYjz3mY0_5EOn93xu-Ul4CIcCnEwDJp33AbIsjax36kMlp61P4n_4f33ikWw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Obeso, Ishmael</creator><creator>Yoon, Benjamin</creator><creator>Ledbetter, David</creator><creator>Aczon, Melissa</creator><creator>Laksana, Eugene</creator><creator>Zhou, Alice</creator><creator>Eckberg, R. Andrew</creator><creator>Mertan, Keith</creator><creator>Khemani, Robinder G.</creator><creator>Wetzel, Randall</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3950-5976</orcidid><orcidid>https://orcid.org/0000-0002-1984-9210</orcidid><orcidid>https://orcid.org/0000-0003-3922-4733</orcidid><orcidid>https://orcid.org/0000-0003-0469-5551</orcidid><orcidid>https://orcid.org/0000-0002-5815-0314</orcidid><orcidid>https://orcid.org/0000-0001-9929-435X</orcidid></search><sort><creationdate>20230901</creationdate><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><author>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolutional Neural Network</topic><topic>Double cycling</topic><topic>Dyssynchrony</topic><topic>Inadequate Support</topic><topic>Mechanical ventilation</topic><topic>Reverse Trigger</topic><topic>Spectrogram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obeso, Ishmael</creatorcontrib><creatorcontrib>Yoon, Benjamin</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Laksana, Eugene</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Eckberg, R. Andrew</creatorcontrib><creatorcontrib>Mertan, Keith</creatorcontrib><creatorcontrib>Khemani, Robinder G.</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obeso, Ishmael</au><au>Yoon, Benjamin</au><au>Ledbetter, David</au><au>Aczon, Melissa</au><au>Laksana, Eugene</au><au>Zhou, Alice</au><au>Eckberg, R. Andrew</au><au>Mertan, Keith</au><au>Khemani, Robinder G.</au><au>Wetzel, Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</atitle><jtitle>Biomedical signal processing and control</jtitle><addtitle>Biomed Signal Process Control</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>86</volume><issue>Pt C</issue><spage>105251</spage><pages>105251-</pages><artnum>105251</artnum><issn>1746-8094</issn><eissn>1746-8108</eissn><abstract>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37587924</pmid><doi>10.1016/j.bspc.2023.105251</doi><orcidid>https://orcid.org/0000-0002-3950-5976</orcidid><orcidid>https://orcid.org/0000-0002-1984-9210</orcidid><orcidid>https://orcid.org/0000-0003-3922-4733</orcidid><orcidid>https://orcid.org/0000-0003-0469-5551</orcidid><orcidid>https://orcid.org/0000-0002-5815-0314</orcidid><orcidid>https://orcid.org/0000-0001-9929-435X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1746-8094 |
ispartof | Biomedical signal processing and control, 2023-09, Vol.86 (Pt C), p.105251, Article 105251 |
issn | 1746-8094 1746-8108 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10426752 |
source | ScienceDirect Freedom Collection |
subjects | Convolutional Neural Network Double cycling Dyssynchrony Inadequate Support Mechanical ventilation Reverse Trigger Spectrogram |
title | A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20application%20of%20spectrograms%20with%20machine%20learning%20can%20detect%20patient%20ventilator%20dyssynchrony&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=Obeso,%20Ishmael&rft.date=2023-09-01&rft.volume=86&rft.issue=Pt%20C&rft.spage=105251&rft.pages=105251-&rft.artnum=105251&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2023.105251&rft_dat=%3Cproquest_pubme%3E2852629906%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852629906&rft_id=info:pmid/37587924&rfr_iscdi=true |