Loading…

A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony

Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lun...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control 2023-09, Vol.86 (Pt C), p.105251, Article 105251
Main Authors: Obeso, Ishmael, Yoon, Benjamin, Ledbetter, David, Aczon, Melissa, Laksana, Eugene, Zhou, Alice, Eckberg, R. Andrew, Mertan, Keith, Khemani, Robinder G., Wetzel, Randall
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3
cites cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3
container_end_page
container_issue Pt C
container_start_page 105251
container_title Biomedical signal processing and control
container_volume 86
creator Obeso, Ishmael
Yoon, Benjamin
Ledbetter, David
Aczon, Melissa
Laksana, Eugene
Zhou, Alice
Eckberg, R. Andrew
Mertan, Keith
Khemani, Robinder G.
Wetzel, Randall
description Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions. [Display omitted]
doi_str_mv 10.1016/j.bspc.2023.105251
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10426752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809423006845</els_id><sourcerecordid>2852629906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaEl33-gh6JjL3YlrbQfUCghtE0h0Et7FmNp1pbZlbbS2sH_vmOchPbSi0aM3nszeo-xd1IspZD1x-1yVSa3VEJV1DDKyDN2KRtdL1op2jcvd9HpC3ZVylYI3TZSn7OLqjFt0yl9yfwdj2mPA4dpGoKDOaTIU8_LhG7OaZ1hLPwpzBs-gtuEiHxAyDHENXcQuceZcHwiHsaZ7-kIA8wpc38o5RDdJqd4uGFvexgK3j7Xa_br65ef9w-Lxx_fvt_fPS6cNvW8WGkH2DVNLyR4gNpXfdfWQqFB3fa6oh92vqGiamX6yqCR4IRXWrm-bqhzzT6fdKfdakTvaJsMg51yGCEfbIJg_32JYWPXaW-l0IoUFCl8eFbI6fcOy2zHUBwOA0RMu2JVa2h414maoOoEdTmVkrF_nSOFPeZjt_aYjz3mY0_5EOn93xu-Ul4CIcCnEwDJp33AbIsjax36kMlp61P4n_4f33ikWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852629906</pqid></control><display><type>article</type><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><source>ScienceDirect Freedom Collection</source><creator>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</creator><creatorcontrib>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</creatorcontrib><description>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions. [Display omitted]</description><identifier>ISSN: 1746-8094</identifier><identifier>EISSN: 1746-8108</identifier><identifier>DOI: 10.1016/j.bspc.2023.105251</identifier><identifier>PMID: 37587924</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Convolutional Neural Network ; Double cycling ; Dyssynchrony ; Inadequate Support ; Mechanical ventilation ; Reverse Trigger ; Spectrogram</subject><ispartof>Biomedical signal processing and control, 2023-09, Vol.86 (Pt C), p.105251, Article 105251</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</citedby><cites>FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</cites><orcidid>0000-0002-3950-5976 ; 0000-0002-1984-9210 ; 0000-0003-3922-4733 ; 0000-0003-0469-5551 ; 0000-0002-5815-0314 ; 0000-0001-9929-435X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37587924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obeso, Ishmael</creatorcontrib><creatorcontrib>Yoon, Benjamin</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Laksana, Eugene</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Eckberg, R. Andrew</creatorcontrib><creatorcontrib>Mertan, Keith</creatorcontrib><creatorcontrib>Khemani, Robinder G.</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><title>Biomedical signal processing and control</title><addtitle>Biomed Signal Process Control</addtitle><description>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions. [Display omitted]</description><subject>Convolutional Neural Network</subject><subject>Double cycling</subject><subject>Dyssynchrony</subject><subject>Inadequate Support</subject><subject>Mechanical ventilation</subject><subject>Reverse Trigger</subject><subject>Spectrogram</subject><issn>1746-8094</issn><issn>1746-8108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1rGzEQFaEl33-gh6JjL3YlrbQfUCghtE0h0Et7FmNp1pbZlbbS2sH_vmOchPbSi0aM3nszeo-xd1IspZD1x-1yVSa3VEJV1DDKyDN2KRtdL1op2jcvd9HpC3ZVylYI3TZSn7OLqjFt0yl9yfwdj2mPA4dpGoKDOaTIU8_LhG7OaZ1hLPwpzBs-gtuEiHxAyDHENXcQuceZcHwiHsaZ7-kIA8wpc38o5RDdJqd4uGFvexgK3j7Xa_br65ef9w-Lxx_fvt_fPS6cNvW8WGkH2DVNLyR4gNpXfdfWQqFB3fa6oh92vqGiamX6yqCR4IRXWrm-bqhzzT6fdKfdakTvaJsMg51yGCEfbIJg_32JYWPXaW-l0IoUFCl8eFbI6fcOy2zHUBwOA0RMu2JVa2h414maoOoEdTmVkrF_nSOFPeZjt_aYjz3mY0_5EOn93xu-Ul4CIcCnEwDJp33AbIsjax36kMlp61P4n_4f33ikWw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Obeso, Ishmael</creator><creator>Yoon, Benjamin</creator><creator>Ledbetter, David</creator><creator>Aczon, Melissa</creator><creator>Laksana, Eugene</creator><creator>Zhou, Alice</creator><creator>Eckberg, R. Andrew</creator><creator>Mertan, Keith</creator><creator>Khemani, Robinder G.</creator><creator>Wetzel, Randall</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3950-5976</orcidid><orcidid>https://orcid.org/0000-0002-1984-9210</orcidid><orcidid>https://orcid.org/0000-0003-3922-4733</orcidid><orcidid>https://orcid.org/0000-0003-0469-5551</orcidid><orcidid>https://orcid.org/0000-0002-5815-0314</orcidid><orcidid>https://orcid.org/0000-0001-9929-435X</orcidid></search><sort><creationdate>20230901</creationdate><title>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</title><author>Obeso, Ishmael ; Yoon, Benjamin ; Ledbetter, David ; Aczon, Melissa ; Laksana, Eugene ; Zhou, Alice ; Eckberg, R. Andrew ; Mertan, Keith ; Khemani, Robinder G. ; Wetzel, Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolutional Neural Network</topic><topic>Double cycling</topic><topic>Dyssynchrony</topic><topic>Inadequate Support</topic><topic>Mechanical ventilation</topic><topic>Reverse Trigger</topic><topic>Spectrogram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obeso, Ishmael</creatorcontrib><creatorcontrib>Yoon, Benjamin</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Laksana, Eugene</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Eckberg, R. Andrew</creatorcontrib><creatorcontrib>Mertan, Keith</creatorcontrib><creatorcontrib>Khemani, Robinder G.</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obeso, Ishmael</au><au>Yoon, Benjamin</au><au>Ledbetter, David</au><au>Aczon, Melissa</au><au>Laksana, Eugene</au><au>Zhou, Alice</au><au>Eckberg, R. Andrew</au><au>Mertan, Keith</au><au>Khemani, Robinder G.</au><au>Wetzel, Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony</atitle><jtitle>Biomedical signal processing and control</jtitle><addtitle>Biomed Signal Process Control</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>86</volume><issue>Pt C</issue><spage>105251</spage><pages>105251-</pages><artnum>105251</artnum><issn>1746-8094</issn><eissn>1746-8108</eissn><abstract>Patients in intensive care units are frequently supported by mechanical ventilation. There is increasing awareness of patient-ventilator dyssynchrony (PVD), a mismatch between patient respiratory effort and assistance provided by the ventilator, as a risk factor for infection, narcotic exposure, lung injury, and adverse neurocognitive effects. One of the most injurious consequences of PVD are double cycled (DC) breaths when two breaths are delivered by the ventilator instead of one. Prior efforts to identify PVD have limited efficacy. An automated method to identify PVD, independent of clinician expertise, acumen, or time, would potentially permit early, targeted treatment to avoid further harm. We performed secondary analyses of data from a clinical trial of children with acute respiratory distress syndrome. Waveforms of ventilator flow, airway pressure and esophageal manometry were annotated to identify DC breaths and underlying PVD subtypes. Spectrograms were generated from those waveforms to train Convolutional Neural Network (CNN) models in detecting DC and underlying PVD subtypes: Reverse Trigger (RT) and Inadequate Support (IS). The DC breath detection model yielded AUROC of 0.980, while the multi-target detection model for underlying dyssynchrony yielded AUROC of 0.980 (RT) and 0.976 (IS). When operating at 75% sensitivity, DC breath detection had a number needed to alert (NNA) 1.3 (99% specificity), while underlying PVD had a NNA 1.6 (98.5% specificity) for RT and NNA 4.0 (98.2% specificity) for IS. CNNs using spectrograms of ventilator waveforms can identify DC breaths and detect the underlying PVD for targeted clinical interventions. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37587924</pmid><doi>10.1016/j.bspc.2023.105251</doi><orcidid>https://orcid.org/0000-0002-3950-5976</orcidid><orcidid>https://orcid.org/0000-0002-1984-9210</orcidid><orcidid>https://orcid.org/0000-0003-3922-4733</orcidid><orcidid>https://orcid.org/0000-0003-0469-5551</orcidid><orcidid>https://orcid.org/0000-0002-5815-0314</orcidid><orcidid>https://orcid.org/0000-0001-9929-435X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-8094
ispartof Biomedical signal processing and control, 2023-09, Vol.86 (Pt C), p.105251, Article 105251
issn 1746-8094
1746-8108
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10426752
source ScienceDirect Freedom Collection
subjects Convolutional Neural Network
Double cycling
Dyssynchrony
Inadequate Support
Mechanical ventilation
Reverse Trigger
Spectrogram
title A novel application of spectrograms with machine learning can detect patient ventilator dyssynchrony
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20application%20of%20spectrograms%20with%20machine%20learning%20can%20detect%20patient%20ventilator%20dyssynchrony&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=Obeso,%20Ishmael&rft.date=2023-09-01&rft.volume=86&rft.issue=Pt%20C&rft.spage=105251&rft.pages=105251-&rft.artnum=105251&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2023.105251&rft_dat=%3Cproquest_pubme%3E2852629906%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-b4cae977f01adaa6d3f98602e5e48f435259d73522625f35e51ac0d242cf675f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852629906&rft_id=info:pmid/37587924&rfr_iscdi=true