Loading…
Formulation and processing of solid self-emulsifying drug delivery systems (HME S-SEDDS): A single-step manufacturing process via hot-melt extrusion technology through response surface methodology
[Display omitted] The objective of the current study is the formulation development and manufacturing of solid self-emulsifying drug delivery systems (HME S-SEDDS) via a single-step continuous hot-melt extrusion (HME) process. For this study, poorly soluble fenofibrate was selected as a model drug....
Saved in:
Published in: | International journal of pharmaceutics 2023-06, Vol.641, p.123055-123055, Article 123055 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
The objective of the current study is the formulation development and manufacturing of solid self-emulsifying drug delivery systems (HME S-SEDDS) via a single-step continuous hot-melt extrusion (HME) process. For this study, poorly soluble fenofibrate was selected as a model drug. From the results of pre-formulation studies, Compritol® HD5 ATO, Gelucire® 48/16, and Capmul® GMO-50 were selected as oil, surfactant and co-surfactant respectively for manufacturing of HME S-SEDDS. Neusilin® US2 was selected as a solid carrier. The design of experiments (response surface methodology) was employed to prepare formulations via a continuous HME process. The formulations were evaluated for emulsifying properties, crystallinity, stability, flow properties and drug release characteristics. The prepared HME S-SEDDS showed excellent flow properties, and the resultant emulsions were stable. The globule size of the optimized formulation was 269.6 nm. The DSC and XRD studies revealed the amorphous nature of the formulation and FTIR studies showed no significant interaction between fenofibrate and excipients. The drug release studies showed significant (p 90% of drug release was observed within 15 min. The stability studies for the optimized formulation were conducted for 3 months at 40 °C/75% RH. |
---|---|
ISSN: | 0378-5173 1873-3476 1873-3476 |
DOI: | 10.1016/j.ijpharm.2023.123055 |